Extensions 1→N→G→Q→1 with N=C9 and Q=C3×C18

Direct product G=N×Q with N=C9 and Q=C3×C18

Semidirect products G=N:Q with N=C9 and Q=C3×C18
extensionφ:Q→Aut NdρLabelID
C91(C3×C18) = C9×C9⋊C6φ: C3×C18/C9C6 ⊆ Aut C9546C9:1(C3xC18)486,100
C92(C3×C18) = C3×C9⋊C18φ: C3×C18/C32C6 ⊆ Aut C954C9:2(C3xC18)486,96
C93(C3×C18) = C18×3- 1+2φ: C3×C18/C18C3 ⊆ Aut C9162C9:3(C3xC18)486,195
C94(C3×C18) = C6×C9⋊C9φ: C3×C18/C3×C6C3 ⊆ Aut C9486C9:4(C3xC18)486,192
C95(C3×C18) = D9×C3×C9φ: C3×C18/C3×C9C2 ⊆ Aut C954C9:5(C3xC18)486,91

Non-split extensions G=N.Q with N=C9 and Q=C3×C18
extensionφ:Q→Aut NdρLabelID
C9.1(C3×C18) = C2×C27○He3φ: C3×C18/C18C3 ⊆ Aut C91623C9.1(C3xC18)486,209
C9.2(C3×C18) = C2×C27⋊C9φ: C3×C18/C3×C6C3 ⊆ Aut C9549C9.2(C3xC18)486,82
C9.3(C3×C18) = C2×C923C3φ: C3×C18/C3×C6C3 ⊆ Aut C9162C9.3(C3xC18)486,193
C9.4(C3×C18) = C6×C27⋊C3φ: C3×C18/C3×C6C3 ⊆ Aut C9162C9.4(C3xC18)486,208
C9.5(C3×C18) = C2×C272C9central extension (φ=1)486C9.5(C3xC18)486,71
C9.6(C3×C18) = C2×C81⋊C3central extension (φ=1)1623C9.6(C3xC18)486,84