Extensions 1→N→G→Q→1 with N=C3 and Q=He35S3

Direct product G=N×Q with N=C3 and Q=He35S3

Semidirect products G=N:Q with N=C3 and Q=He35S3
extensionφ:Q→Aut NdρLabelID
C3⋊(He35S3) = C3413S3φ: He35S3/C3×He3C2 ⊆ Aut C354C3:(He3:5S3)486,248

Non-split extensions G=N.Q with N=C3 and Q=He35S3
extensionφ:Q→Aut NdρLabelID
C3.1(He35S3) = C336D9φ: He35S3/C3×He3C2 ⊆ Aut C354C3.1(He3:5S3)486,181
C3.2(He35S3) = He34D9φ: He35S3/C3×He3C2 ⊆ Aut C3546C3.2(He3:5S3)486,182
C3.3(He35S3) = C347S3φ: He35S3/C3×He3C2 ⊆ Aut C327C3.3(He3:5S3)486,185
C3.4(He35S3) = He3.(C3⋊S3)φ: He35S3/C3×He3C2 ⊆ Aut C381C3.4(He3:5S3)486,186
C3.5(He35S3) = C3⋊(He3⋊S3)φ: He35S3/C3×He3C2 ⊆ Aut C381C3.5(He3:5S3)486,187
C3.6(He35S3) = (C32×C9).S3φ: He35S3/C3×He3C2 ⊆ Aut C381C3.6(He3:5S3)486,188
C3.7(He35S3) = C3≀C3⋊S3φ: He35S3/C3×He3C2 ⊆ Aut C3276+C3.7(He3:5S3)486,189
C3.8(He35S3) = C346S3central stem extension (φ=1)27C3.8(He3:5S3)486,183