extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C27)⋊1S3 = C32⋊C54 | φ: S3/C1 → S3 ⊆ Aut C3×C27 | 54 | 6 | (C3xC27):1S3 | 486,16 |
(C3×C27)⋊2S3 = He3.C18 | φ: S3/C1 → S3 ⊆ Aut C3×C27 | 81 | 3 | (C3xC27):2S3 | 486,26 |
(C3×C27)⋊3S3 = He3.2C18 | φ: S3/C1 → S3 ⊆ Aut C3×C27 | 81 | 3 | (C3xC27):3S3 | 486,28 |
(C3×C27)⋊4S3 = C32⋊2D27 | φ: S3/C1 → S3 ⊆ Aut C3×C27 | 54 | 6 | (C3xC27):4S3 | 486,51 |
(C3×C27)⋊5S3 = He3.3D9 | φ: S3/C1 → S3 ⊆ Aut C3×C27 | 81 | 6+ | (C3xC27):5S3 | 486,58 |
(C3×C27)⋊6S3 = He3.4D9 | φ: S3/C1 → S3 ⊆ Aut C3×C27 | 81 | 6+ | (C3xC27):6S3 | 486,59 |
(C3×C27)⋊7S3 = He3.5D9 | φ: S3/C1 → S3 ⊆ Aut C3×C27 | 81 | 6+ | (C3xC27):7S3 | 486,163 |
(C3×C27)⋊8S3 = He3.5C18 | φ: S3/C1 → S3 ⊆ Aut C3×C27 | 81 | 3 | (C3xC27):8S3 | 486,164 |
(C3×C27)⋊9S3 = C3⋊S3×C27 | φ: S3/C3 → C2 ⊆ Aut C3×C27 | 162 | | (C3xC27):9S3 | 486,161 |
(C3×C27)⋊10S3 = C3×C27⋊S3 | φ: S3/C3 → C2 ⊆ Aut C3×C27 | 162 | | (C3xC27):10S3 | 486,160 |
(C3×C27)⋊11S3 = C32⋊4D27 | φ: S3/C3 → C2 ⊆ Aut C3×C27 | 243 | | (C3xC27):11S3 | 486,184 |