non-abelian, supersoluble, monomial
Aliases: He3.4D9, 3- 1+2.2D9, C27⋊C3⋊3S3, (C3×C27)⋊6S3, C9○He3.4S3, C9.6He3⋊1C2, C32.4(C9⋊S3), C9.4(He3⋊C2), C3.10(C32⋊2D9), (C3×C9).11(C3⋊S3), SmallGroup(486,59)
Series: Derived ►Chief ►Lower central ►Upper central
C9.6He3 — He3.4D9 |
Generators and relations for He3.4D9
G = < a,b,c,d,e | a3=b3=c3=e2=1, d9=ebe=b-1, dad-1=eae=ab=ba, cac-1=ab-1, bc=cb, bd=db, dcd-1=a-1c, ece=abc-1, ede=bd8 >
Character table of He3.4D9
class | 1 | 2 | 3A | 3B | 3C | 3D | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 27A | 27B | 27C | 27D | 27E | 27F | 27G | 27H | 27I | 27J | 27K | 27L | 27M | 27N | 27O | |
size | 1 | 81 | 2 | 3 | 3 | 18 | 81 | 81 | 2 | 2 | 2 | 6 | 6 | 18 | 18 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 2 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ8 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ9 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ10 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ11 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ12 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ13 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ14 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ15 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ16 | 3 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | ζ65 | ζ6 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ17 | 3 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | ζ6 | ζ65 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ18 | 3 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | ζ32 | ζ3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ19 | 3 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | ζ3 | ζ32 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ20 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2724+3ζ273 | 3ζ2721+3ζ276 | 3ζ2715+3ζ2712 | 0 | 0 | 0 | 0 | 2ζ2714+ζ2713+ζ275-ζ274 | ζ2723+ζ2722-ζ2713+2ζ275 | 2ζ2717+ζ2710+ζ278-ζ27 | ζ2726+ζ2719-ζ2710+2ζ278 | ζ2726+ζ2710-ζ278+2ζ27 | ζ2716+2ζ2711-ζ277+ζ272 | 2ζ2725-ζ2711+ζ277+ζ272 | ζ2720+ζ2716+2ζ277-ζ272 | ζ2723+ζ2713-ζ275+2ζ274 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ21 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2715+3ζ2712 | 3ζ2724+3ζ273 | 3ζ2721+3ζ276 | 0 | 0 | 0 | 0 | ζ2720+ζ2716+2ζ277-ζ272 | ζ2716+2ζ2711-ζ277+ζ272 | ζ2723+ζ2722-ζ2713+2ζ275 | ζ2723+ζ2713-ζ275+2ζ274 | 2ζ2714+ζ2713+ζ275-ζ274 | ζ2726+ζ2719-ζ2710+2ζ278 | ζ2726+ζ2710-ζ278+2ζ27 | 2ζ2717+ζ2710+ζ278-ζ27 | 2ζ2725-ζ2711+ζ277+ζ272 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ22 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2721+3ζ276 | 3ζ2715+3ζ2712 | 3ζ2724+3ζ273 | 0 | 0 | 0 | 0 | 2ζ2717+ζ2710+ζ278-ζ27 | ζ2726+ζ2719-ζ2710+2ζ278 | ζ2716+2ζ2711-ζ277+ζ272 | 2ζ2725-ζ2711+ζ277+ζ272 | ζ2720+ζ2716+2ζ277-ζ272 | ζ2723+ζ2713-ζ275+2ζ274 | 2ζ2714+ζ2713+ζ275-ζ274 | ζ2723+ζ2722-ζ2713+2ζ275 | ζ2726+ζ2710-ζ278+2ζ27 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2724+3ζ273 | 3ζ2721+3ζ276 | 3ζ2715+3ζ2712 | 0 | 0 | 0 | 0 | ζ2723+ζ2713-ζ275+2ζ274 | 2ζ2714+ζ2713+ζ275-ζ274 | ζ2726+ζ2710-ζ278+2ζ27 | 2ζ2717+ζ2710+ζ278-ζ27 | ζ2726+ζ2719-ζ2710+2ζ278 | ζ2720+ζ2716+2ζ277-ζ272 | ζ2716+2ζ2711-ζ277+ζ272 | 2ζ2725-ζ2711+ζ277+ζ272 | ζ2723+ζ2722-ζ2713+2ζ275 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2715+3ζ2712 | 3ζ2724+3ζ273 | 3ζ2721+3ζ276 | 0 | 0 | 0 | 0 | 2ζ2725-ζ2711+ζ277+ζ272 | ζ2720+ζ2716+2ζ277-ζ272 | 2ζ2714+ζ2713+ζ275-ζ274 | ζ2723+ζ2722-ζ2713+2ζ275 | ζ2723+ζ2713-ζ275+2ζ274 | 2ζ2717+ζ2710+ζ278-ζ27 | ζ2726+ζ2719-ζ2710+2ζ278 | ζ2726+ζ2710-ζ278+2ζ27 | ζ2716+2ζ2711-ζ277+ζ272 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2721+3ζ276 | 3ζ2715+3ζ2712 | 3ζ2724+3ζ273 | 0 | 0 | 0 | 0 | ζ2726+ζ2719-ζ2710+2ζ278 | ζ2726+ζ2710-ζ278+2ζ27 | 2ζ2725-ζ2711+ζ277+ζ272 | ζ2720+ζ2716+2ζ277-ζ272 | ζ2716+2ζ2711-ζ277+ζ272 | 2ζ2714+ζ2713+ζ275-ζ274 | ζ2723+ζ2722-ζ2713+2ζ275 | ζ2723+ζ2713-ζ275+2ζ274 | 2ζ2717+ζ2710+ζ278-ζ27 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2721+3ζ276 | 3ζ2715+3ζ2712 | 3ζ2724+3ζ273 | 0 | 0 | 0 | 0 | ζ2726+ζ2710-ζ278+2ζ27 | 2ζ2717+ζ2710+ζ278-ζ27 | ζ2720+ζ2716+2ζ277-ζ272 | ζ2716+2ζ2711-ζ277+ζ272 | 2ζ2725-ζ2711+ζ277+ζ272 | ζ2723+ζ2722-ζ2713+2ζ275 | ζ2723+ζ2713-ζ275+2ζ274 | 2ζ2714+ζ2713+ζ275-ζ274 | ζ2726+ζ2719-ζ2710+2ζ278 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ27 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2715+3ζ2712 | 3ζ2724+3ζ273 | 3ζ2721+3ζ276 | 0 | 0 | 0 | 0 | ζ2716+2ζ2711-ζ277+ζ272 | 2ζ2725-ζ2711+ζ277+ζ272 | ζ2723+ζ2713-ζ275+2ζ274 | 2ζ2714+ζ2713+ζ275-ζ274 | ζ2723+ζ2722-ζ2713+2ζ275 | ζ2726+ζ2710-ζ278+2ζ27 | 2ζ2717+ζ2710+ζ278-ζ27 | ζ2726+ζ2719-ζ2710+2ζ278 | ζ2720+ζ2716+2ζ277-ζ272 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2724+3ζ273 | 3ζ2721+3ζ276 | 3ζ2715+3ζ2712 | 0 | 0 | 0 | 0 | ζ2723+ζ2722-ζ2713+2ζ275 | ζ2723+ζ2713-ζ275+2ζ274 | ζ2726+ζ2719-ζ2710+2ζ278 | ζ2726+ζ2710-ζ278+2ζ27 | 2ζ2717+ζ2710+ζ278-ζ27 | 2ζ2725-ζ2711+ζ277+ζ272 | ζ2720+ζ2716+2ζ277-ζ272 | ζ2716+2ζ2711-ζ277+ζ272 | 2ζ2714+ζ2713+ζ275-ζ274 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 6 | 0 | 6 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | -3 | -3 | -3 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D9 |
ρ30 | 6 | 0 | 6 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | -3 | -3 | -3 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D9 |
(1 80 49)(2 72 32)(3 64 42)(4 56 52)(5 75 35)(6 67 45)(7 59 28)(8 78 38)(9 70 48)(10 62 31)(11 81 41)(12 73 51)(13 65 34)(14 57 44)(15 76 54)(16 68 37)(17 60 47)(18 79 30)(19 71 40)(20 63 50)(21 55 33)(22 74 43)(23 66 53)(24 58 36)(25 77 46)(26 69 29)(27 61 39)
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 25 16)(8 26 17)(9 27 18)(28 46 37)(29 47 38)(30 48 39)(31 49 40)(32 50 41)(33 51 42)(34 52 43)(35 53 44)(36 54 45)(55 73 64)(56 74 65)(57 75 66)(58 76 67)(59 77 68)(60 78 69)(61 79 70)(62 80 71)(63 81 72)
(2 32 81)(3 55 42)(5 35 57)(6 58 45)(8 38 60)(9 61 48)(11 41 63)(12 64 51)(14 44 66)(15 67 54)(17 47 69)(18 70 30)(20 50 72)(21 73 33)(23 53 75)(24 76 36)(26 29 78)(27 79 39)(28 37 46)(31 40 49)(34 43 52)(56 74 65)(59 77 68)(62 80 71)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 27)(20 26)(21 25)(22 24)(28 33)(29 32)(30 31)(34 54)(35 53)(36 52)(37 51)(38 50)(39 49)(40 48)(41 47)(42 46)(43 45)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)(61 62)(69 81)(70 80)(71 79)(72 78)(73 77)(74 76)
G:=sub<Sym(81)| (1,80,49)(2,72,32)(3,64,42)(4,56,52)(5,75,35)(6,67,45)(7,59,28)(8,78,38)(9,70,48)(10,62,31)(11,81,41)(12,73,51)(13,65,34)(14,57,44)(15,76,54)(16,68,37)(17,60,47)(18,79,30)(19,71,40)(20,63,50)(21,55,33)(22,74,43)(23,66,53)(24,58,36)(25,77,46)(26,69,29)(27,61,39), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45)(55,73,64)(56,74,65)(57,75,66)(58,76,67)(59,77,68)(60,78,69)(61,79,70)(62,80,71)(63,81,72), (2,32,81)(3,55,42)(5,35,57)(6,58,45)(8,38,60)(9,61,48)(11,41,63)(12,64,51)(14,44,66)(15,67,54)(17,47,69)(18,70,30)(20,50,72)(21,73,33)(23,53,75)(24,76,36)(26,29,78)(27,79,39)(28,37,46)(31,40,49)(34,43,52)(56,74,65)(59,77,68)(62,80,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,33)(29,32)(30,31)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48)(41,47)(42,46)(43,45)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)(69,81)(70,80)(71,79)(72,78)(73,77)(74,76)>;
G:=Group( (1,80,49)(2,72,32)(3,64,42)(4,56,52)(5,75,35)(6,67,45)(7,59,28)(8,78,38)(9,70,48)(10,62,31)(11,81,41)(12,73,51)(13,65,34)(14,57,44)(15,76,54)(16,68,37)(17,60,47)(18,79,30)(19,71,40)(20,63,50)(21,55,33)(22,74,43)(23,66,53)(24,58,36)(25,77,46)(26,69,29)(27,61,39), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45)(55,73,64)(56,74,65)(57,75,66)(58,76,67)(59,77,68)(60,78,69)(61,79,70)(62,80,71)(63,81,72), (2,32,81)(3,55,42)(5,35,57)(6,58,45)(8,38,60)(9,61,48)(11,41,63)(12,64,51)(14,44,66)(15,67,54)(17,47,69)(18,70,30)(20,50,72)(21,73,33)(23,53,75)(24,76,36)(26,29,78)(27,79,39)(28,37,46)(31,40,49)(34,43,52)(56,74,65)(59,77,68)(62,80,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,33)(29,32)(30,31)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48)(41,47)(42,46)(43,45)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)(69,81)(70,80)(71,79)(72,78)(73,77)(74,76) );
G=PermutationGroup([[(1,80,49),(2,72,32),(3,64,42),(4,56,52),(5,75,35),(6,67,45),(7,59,28),(8,78,38),(9,70,48),(10,62,31),(11,81,41),(12,73,51),(13,65,34),(14,57,44),(15,76,54),(16,68,37),(17,60,47),(18,79,30),(19,71,40),(20,63,50),(21,55,33),(22,74,43),(23,66,53),(24,58,36),(25,77,46),(26,69,29),(27,61,39)], [(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,25,16),(8,26,17),(9,27,18),(28,46,37),(29,47,38),(30,48,39),(31,49,40),(32,50,41),(33,51,42),(34,52,43),(35,53,44),(36,54,45),(55,73,64),(56,74,65),(57,75,66),(58,76,67),(59,77,68),(60,78,69),(61,79,70),(62,80,71),(63,81,72)], [(2,32,81),(3,55,42),(5,35,57),(6,58,45),(8,38,60),(9,61,48),(11,41,63),(12,64,51),(14,44,66),(15,67,54),(17,47,69),(18,70,30),(20,50,72),(21,73,33),(23,53,75),(24,76,36),(26,29,78),(27,79,39),(28,37,46),(31,40,49),(34,43,52),(56,74,65),(59,77,68),(62,80,71)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,27),(20,26),(21,25),(22,24),(28,33),(29,32),(30,31),(34,54),(35,53),(36,52),(37,51),(38,50),(39,49),(40,48),(41,47),(42,46),(43,45),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63),(61,62),(69,81),(70,80),(71,79),(72,78),(73,77),(74,76)]])
Matrix representation of He3.4D9 ►in GL6(𝔽109)
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
108 | 108 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 108 | 108 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 108 | 108 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 108 | 108 | 0 | 0 |
0 | 0 | 0 | 0 | 108 | 108 |
0 | 0 | 0 | 0 | 1 | 0 |
98 | 41 | 52 | 11 | 98 | 41 |
68 | 57 | 98 | 41 | 68 | 57 |
52 | 11 | 52 | 11 | 68 | 57 |
98 | 41 | 98 | 41 | 52 | 11 |
98 | 41 | 68 | 57 | 68 | 57 |
68 | 57 | 52 | 11 | 52 | 11 |
68 | 57 | 98 | 41 | 68 | 57 |
98 | 41 | 52 | 11 | 98 | 41 |
98 | 41 | 98 | 41 | 52 | 11 |
52 | 11 | 52 | 11 | 68 | 57 |
68 | 57 | 52 | 11 | 52 | 11 |
98 | 41 | 68 | 57 | 68 | 57 |
G:=sub<GL(6,GF(109))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[108,1,0,0,0,0,108,0,0,0,0,0,0,0,108,1,0,0,0,0,108,0,0,0,0,0,0,0,108,1,0,0,0,0,108,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,108,0,0,0,0,1,108,0,0,0,0,0,0,108,1,0,0,0,0,108,0],[98,68,52,98,98,68,41,57,11,41,41,57,52,98,52,98,68,52,11,41,11,41,57,11,98,68,68,52,68,52,41,57,57,11,57,11],[68,98,98,52,68,98,57,41,41,11,57,41,98,52,98,52,52,68,41,11,41,11,11,57,68,98,52,68,52,68,57,41,11,57,11,57] >;
He3.4D9 in GAP, Magma, Sage, TeX
{\rm He}_3._4D_9
% in TeX
G:=Group("He3.4D9");
// GroupNames label
G:=SmallGroup(486,59);
// by ID
G=gap.SmallGroup(486,59);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,265,1195,218,548,4755,453,3250,1906,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^2=1,d^9=e*b*e=b^-1,d*a*d^-1=e*a*e=a*b=b*a,c*a*c^-1=a*b^-1,b*c=c*b,b*d=d*b,d*c*d^-1=a^-1*c,e*c*e=a*b*c^-1,e*d*e=b*d^8>;
// generators/relations
Export
Subgroup lattice of He3.4D9 in TeX
Character table of He3.4D9 in TeX