Copied to
clipboard

G = He3.4D9order 486 = 2·35

4th non-split extension by He3 of D9 acting via D9/C3=S3

non-abelian, supersoluble, monomial

Aliases: He3.4D9, 3- 1+2.2D9, C27⋊C33S3, (C3×C27)⋊6S3, C9○He3.4S3, C9.6He31C2, C32.4(C9⋊S3), C9.4(He3⋊C2), C3.10(C322D9), (C3×C9).11(C3⋊S3), SmallGroup(486,59)

Series: Derived Chief Lower central Upper central

C1C32C9.6He3 — He3.4D9
C1C3C32C3×C9C9○He3C9.6He3 — He3.4D9
C9.6He3 — He3.4D9
C1

Generators and relations for He3.4D9
 G = < a,b,c,d,e | a3=b3=c3=e2=1, d9=ebe=b-1, dad-1=eae=ab=ba, cac-1=ab-1, bc=cb, bd=db, dcd-1=a-1c, ece=abc-1, ede=bd8 >

81C2
3C3
9C3
27S3
81S3
81C6
2C9
3C32
3C9
3C9
9D9
9D9
9C3⋊S3
9D9
27C3×S3
3C3×C9
3C27
3C27
3C27
63- 1+2
3D27
3D27
3C9⋊S3
3D27
9C9⋊C6
9C3×D9
9C9⋊C6
9C32⋊C6
3C27⋊C6
3He3.4S3
3C3×D27
3C27⋊C6

Character table of He3.4D9

 class 123A3B3C3D6A6B9A9B9C9D9E9F9G27A27B27C27D27E27F27G27H27I27J27K27L27M27N27O
 size 181233188181222661818666666666181818181818
ρ1111111111111111111111111111111    trivial
ρ21-11111-1-11111111111111111111111    linear of order 2
ρ3202222002222222-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ420222-10022222-1-1-1-1-1-1-1-1-1-1-1-122-12-1    orthogonal lifted from S3
ρ520222-10022222-1-1222222222-1-1-1-1-1-1    orthogonal lifted from S3
ρ620222-10022222-1-1-1-1-1-1-1-1-1-1-12-1-12-12    orthogonal lifted from S3
ρ720222-100-1-1-1-1-12-1ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ989ζ9792ζ9594ζ9594ζ989    orthogonal lifted from D9
ρ820222-100-1-1-1-1-1-12ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9792ζ9594ζ989ζ9594ζ9792ζ989    orthogonal lifted from D9
ρ920222-100-1-1-1-1-1-12ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ989ζ9792ζ9594ζ9792ζ989ζ9594    orthogonal lifted from D9
ρ1020222-100-1-1-1-1-1-12ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ9594ζ989ζ9792ζ989ζ9594ζ9792    orthogonal lifted from D9
ρ1120222-100-1-1-1-1-12-1ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9792ζ9594ζ989ζ989ζ9792    orthogonal lifted from D9
ρ1220222200-1-1-1-1-1-1-1ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ9792ζ9792ζ9594ζ9594ζ989ζ989    orthogonal lifted from D9
ρ1320222-100-1-1-1-1-12-1ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ9594ζ989ζ9792ζ9792ζ9594    orthogonal lifted from D9
ρ1420222200-1-1-1-1-1-1-1ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9594ζ9594ζ989ζ989ζ9792ζ9792    orthogonal lifted from D9
ρ1520222200-1-1-1-1-1-1-1ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ989ζ989ζ9792ζ9792ζ9594ζ9594    orthogonal lifted from D9
ρ163-13-3+3-3/2-3-3-3/20ζ65ζ6333-3+3-3/2-3-3-3/200000000000000000    complex lifted from He3⋊C2
ρ173-13-3-3-3/2-3+3-3/20ζ6ζ65333-3-3-3/2-3+3-3/200000000000000000    complex lifted from He3⋊C2
ρ18313-3-3-3/2-3+3-3/20ζ32ζ3333-3-3-3/2-3+3-3/200000000000000000    complex lifted from He3⋊C2
ρ19313-3+3-3/2-3-3-3/20ζ3ζ32333-3+3-3/2-3-3-3/200000000000000000    complex lifted from He3⋊C2
ρ2060-3000002724+3ζ2732721+3ζ2762715+3ζ2712000027142713275274ζ272327222713+2ζ2752717271027827ζ272627192710+2ζ278ζ27262710278+2ζ27ζ2716+2ζ271127727227252711277272ζ27202716+2ζ277272ζ27232713275+2ζ274000000    orthogonal faithful
ρ2160-3000002715+3ζ27122724+3ζ2732721+3ζ2760000ζ27202716+2ζ277272ζ2716+2ζ2711277272ζ272327222713+2ζ275ζ27232713275+2ζ27427142713275274ζ272627192710+2ζ278ζ27262710278+2ζ27271727102782727252711277272000000    orthogonal faithful
ρ2260-3000002721+3ζ2762715+3ζ27122724+3ζ27300002717271027827ζ272627192710+2ζ278ζ2716+2ζ271127727227252711277272ζ27202716+2ζ277272ζ27232713275+2ζ27427142713275274ζ272327222713+2ζ275ζ27262710278+2ζ27000000    orthogonal faithful
ρ2360-3000002724+3ζ2732721+3ζ2762715+3ζ27120000ζ27232713275+2ζ27427142713275274ζ27262710278+2ζ272717271027827ζ272627192710+2ζ278ζ27202716+2ζ277272ζ2716+2ζ271127727227252711277272ζ272327222713+2ζ275000000    orthogonal faithful
ρ2460-3000002715+3ζ27122724+3ζ2732721+3ζ276000027252711277272ζ27202716+2ζ27727227142713275274ζ272327222713+2ζ275ζ27232713275+2ζ2742717271027827ζ272627192710+2ζ278ζ27262710278+2ζ27ζ2716+2ζ2711277272000000    orthogonal faithful
ρ2560-3000002721+3ζ2762715+3ζ27122724+3ζ2730000ζ272627192710+2ζ278ζ27262710278+2ζ2727252711277272ζ27202716+2ζ277272ζ2716+2ζ271127727227142713275274ζ272327222713+2ζ275ζ27232713275+2ζ2742717271027827000000    orthogonal faithful
ρ2660-3000002721+3ζ2762715+3ζ27122724+3ζ2730000ζ27262710278+2ζ272717271027827ζ27202716+2ζ277272ζ2716+2ζ271127727227252711277272ζ272327222713+2ζ275ζ27232713275+2ζ27427142713275274ζ272627192710+2ζ278000000    orthogonal faithful
ρ2760-3000002715+3ζ27122724+3ζ2732721+3ζ2760000ζ2716+2ζ271127727227252711277272ζ27232713275+2ζ27427142713275274ζ272327222713+2ζ275ζ27262710278+2ζ272717271027827ζ272627192710+2ζ278ζ27202716+2ζ277272000000    orthogonal faithful
ρ2860-3000002724+3ζ2732721+3ζ2762715+3ζ27120000ζ272327222713+2ζ275ζ27232713275+2ζ274ζ272627192710+2ζ278ζ27262710278+2ζ27271727102782727252711277272ζ27202716+2ζ277272ζ2716+2ζ271127727227142713275274000000    orthogonal faithful
ρ29606-3-3-3-3+3-3000-3-3-33+3-3/23-3-3/200000000000000000    complex lifted from C322D9
ρ30606-3+3-3-3-3-3000-3-3-33-3-3/23+3-3/200000000000000000    complex lifted from C322D9

Smallest permutation representation of He3.4D9
On 81 points
Generators in S81
(1 80 49)(2 72 32)(3 64 42)(4 56 52)(5 75 35)(6 67 45)(7 59 28)(8 78 38)(9 70 48)(10 62 31)(11 81 41)(12 73 51)(13 65 34)(14 57 44)(15 76 54)(16 68 37)(17 60 47)(18 79 30)(19 71 40)(20 63 50)(21 55 33)(22 74 43)(23 66 53)(24 58 36)(25 77 46)(26 69 29)(27 61 39)
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 25 16)(8 26 17)(9 27 18)(28 46 37)(29 47 38)(30 48 39)(31 49 40)(32 50 41)(33 51 42)(34 52 43)(35 53 44)(36 54 45)(55 73 64)(56 74 65)(57 75 66)(58 76 67)(59 77 68)(60 78 69)(61 79 70)(62 80 71)(63 81 72)
(2 32 81)(3 55 42)(5 35 57)(6 58 45)(8 38 60)(9 61 48)(11 41 63)(12 64 51)(14 44 66)(15 67 54)(17 47 69)(18 70 30)(20 50 72)(21 73 33)(23 53 75)(24 76 36)(26 29 78)(27 79 39)(28 37 46)(31 40 49)(34 43 52)(56 74 65)(59 77 68)(62 80 71)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 27)(20 26)(21 25)(22 24)(28 33)(29 32)(30 31)(34 54)(35 53)(36 52)(37 51)(38 50)(39 49)(40 48)(41 47)(42 46)(43 45)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)(61 62)(69 81)(70 80)(71 79)(72 78)(73 77)(74 76)

G:=sub<Sym(81)| (1,80,49)(2,72,32)(3,64,42)(4,56,52)(5,75,35)(6,67,45)(7,59,28)(8,78,38)(9,70,48)(10,62,31)(11,81,41)(12,73,51)(13,65,34)(14,57,44)(15,76,54)(16,68,37)(17,60,47)(18,79,30)(19,71,40)(20,63,50)(21,55,33)(22,74,43)(23,66,53)(24,58,36)(25,77,46)(26,69,29)(27,61,39), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45)(55,73,64)(56,74,65)(57,75,66)(58,76,67)(59,77,68)(60,78,69)(61,79,70)(62,80,71)(63,81,72), (2,32,81)(3,55,42)(5,35,57)(6,58,45)(8,38,60)(9,61,48)(11,41,63)(12,64,51)(14,44,66)(15,67,54)(17,47,69)(18,70,30)(20,50,72)(21,73,33)(23,53,75)(24,76,36)(26,29,78)(27,79,39)(28,37,46)(31,40,49)(34,43,52)(56,74,65)(59,77,68)(62,80,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,33)(29,32)(30,31)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48)(41,47)(42,46)(43,45)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)(69,81)(70,80)(71,79)(72,78)(73,77)(74,76)>;

G:=Group( (1,80,49)(2,72,32)(3,64,42)(4,56,52)(5,75,35)(6,67,45)(7,59,28)(8,78,38)(9,70,48)(10,62,31)(11,81,41)(12,73,51)(13,65,34)(14,57,44)(15,76,54)(16,68,37)(17,60,47)(18,79,30)(19,71,40)(20,63,50)(21,55,33)(22,74,43)(23,66,53)(24,58,36)(25,77,46)(26,69,29)(27,61,39), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45)(55,73,64)(56,74,65)(57,75,66)(58,76,67)(59,77,68)(60,78,69)(61,79,70)(62,80,71)(63,81,72), (2,32,81)(3,55,42)(5,35,57)(6,58,45)(8,38,60)(9,61,48)(11,41,63)(12,64,51)(14,44,66)(15,67,54)(17,47,69)(18,70,30)(20,50,72)(21,73,33)(23,53,75)(24,76,36)(26,29,78)(27,79,39)(28,37,46)(31,40,49)(34,43,52)(56,74,65)(59,77,68)(62,80,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,33)(29,32)(30,31)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48)(41,47)(42,46)(43,45)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)(69,81)(70,80)(71,79)(72,78)(73,77)(74,76) );

G=PermutationGroup([[(1,80,49),(2,72,32),(3,64,42),(4,56,52),(5,75,35),(6,67,45),(7,59,28),(8,78,38),(9,70,48),(10,62,31),(11,81,41),(12,73,51),(13,65,34),(14,57,44),(15,76,54),(16,68,37),(17,60,47),(18,79,30),(19,71,40),(20,63,50),(21,55,33),(22,74,43),(23,66,53),(24,58,36),(25,77,46),(26,69,29),(27,61,39)], [(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,25,16),(8,26,17),(9,27,18),(28,46,37),(29,47,38),(30,48,39),(31,49,40),(32,50,41),(33,51,42),(34,52,43),(35,53,44),(36,54,45),(55,73,64),(56,74,65),(57,75,66),(58,76,67),(59,77,68),(60,78,69),(61,79,70),(62,80,71),(63,81,72)], [(2,32,81),(3,55,42),(5,35,57),(6,58,45),(8,38,60),(9,61,48),(11,41,63),(12,64,51),(14,44,66),(15,67,54),(17,47,69),(18,70,30),(20,50,72),(21,73,33),(23,53,75),(24,76,36),(26,29,78),(27,79,39),(28,37,46),(31,40,49),(34,43,52),(56,74,65),(59,77,68),(62,80,71)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,27),(20,26),(21,25),(22,24),(28,33),(29,32),(30,31),(34,54),(35,53),(36,52),(37,51),(38,50),(39,49),(40,48),(41,47),(42,46),(43,45),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63),(61,62),(69,81),(70,80),(71,79),(72,78),(73,77),(74,76)]])

Matrix representation of He3.4D9 in GL6(𝔽109)

001000
000100
000010
000001
100000
010000
,
1081080000
100000
0010810800
001000
0000108108
000010
,
100000
010000
000100
0010810800
0000108108
000010
,
984152119841
685798416857
521152116857
984198415211
984168576857
685752115211
,
685798416857
984152119841
984198415211
521152116857
685752115211
984168576857

G:=sub<GL(6,GF(109))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[108,1,0,0,0,0,108,0,0,0,0,0,0,0,108,1,0,0,0,0,108,0,0,0,0,0,0,0,108,1,0,0,0,0,108,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,108,0,0,0,0,1,108,0,0,0,0,0,0,108,1,0,0,0,0,108,0],[98,68,52,98,98,68,41,57,11,41,41,57,52,98,52,98,68,52,11,41,11,41,57,11,98,68,68,52,68,52,41,57,57,11,57,11],[68,98,98,52,68,98,57,41,41,11,57,41,98,52,98,52,52,68,41,11,41,11,11,57,68,98,52,68,52,68,57,41,11,57,11,57] >;

He3.4D9 in GAP, Magma, Sage, TeX

{\rm He}_3._4D_9
% in TeX

G:=Group("He3.4D9");
// GroupNames label

G:=SmallGroup(486,59);
// by ID

G=gap.SmallGroup(486,59);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,265,1195,218,548,4755,453,3250,1906,11669]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^2=1,d^9=e*b*e=b^-1,d*a*d^-1=e*a*e=a*b=b*a,c*a*c^-1=a*b^-1,b*c=c*b,b*d=d*b,d*c*d^-1=a^-1*c,e*c*e=a*b*c^-1,e*d*e=b*d^8>;
// generators/relations

Export

Subgroup lattice of He3.4D9 in TeX
Character table of He3.4D9 in TeX

׿
×
𝔽