Copied to
clipboard

G = He3.3D9order 486 = 2·35

3rd non-split extension by He3 of D9 acting via D9/C3=S3

non-abelian, supersoluble, monomial

Aliases: He3.3D9, 3- 1+2.1D9, C27⋊C32S3, (C3×C27)⋊5S3, C9○He3.3S3, C9.5He31C2, C32.3(C9⋊S3), C9.3(He3⋊C2), C3.9(C322D9), (C3×C9).10(C3⋊S3), SmallGroup(486,58)

Series: Derived Chief Lower central Upper central

C1C32C9.5He3 — He3.3D9
C1C3C32C3×C9C9○He3C9.5He3 — He3.3D9
C9.5He3 — He3.3D9
C1

Generators and relations for He3.3D9
 G = < a,b,c,d,e | a3=b3=c3=e2=1, d9=b, dad-1=eae=ab=ba, cac-1=ab-1, bc=cb, bd=db, ebe=b-1, dcd-1=a-1c, ece=abc-1, ede=b-1d8 >

81C2
3C3
9C3
27S3
81S3
81C6
2C9
3C32
3C9
3C9
9D9
9D9
9C3⋊S3
9D9
27C3×S3
3C3×C9
3C27
3C27
3C27
63- 1+2
3D27
3D27
3C9⋊S3
3D27
9C9⋊C6
9C3×D9
9C9⋊C6
9C32⋊C6
3C27⋊C6
3He3.4S3
3C3×D27
3C27⋊C6

Character table of He3.3D9

 class 123A3B3C3D6A6B9A9B9C9D9E9F9G27A27B27C27D27E27F27G27H27I27J27K27L27M27N27O
 size 181233188181222661818666666666181818181818
ρ1111111111111111111111111111111    trivial
ρ21-11111-1-11111111111111111111111    linear of order 2
ρ3202222002222222-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ420222-10022222-1-1-1-1-1-1-1-1-1-1-1-122-12-1    orthogonal lifted from S3
ρ520222-10022222-1-1222222222-1-1-1-1-1-1    orthogonal lifted from S3
ρ620222-10022222-1-1-1-1-1-1-1-1-1-1-12-1-12-12    orthogonal lifted from S3
ρ720222-100-1-1-1-1-12-1ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ989ζ9792ζ9594ζ9594ζ989    orthogonal lifted from D9
ρ820222-100-1-1-1-1-1-12ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9792ζ9594ζ989ζ9594ζ9792ζ989    orthogonal lifted from D9
ρ920222-100-1-1-1-1-1-12ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ989ζ9792ζ9594ζ9792ζ989ζ9594    orthogonal lifted from D9
ρ1020222-100-1-1-1-1-1-12ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ9594ζ989ζ9792ζ989ζ9594ζ9792    orthogonal lifted from D9
ρ1120222-100-1-1-1-1-12-1ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9792ζ9594ζ989ζ989ζ9792    orthogonal lifted from D9
ρ1220222200-1-1-1-1-1-1-1ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ9792ζ9792ζ9594ζ9594ζ989ζ989    orthogonal lifted from D9
ρ1320222-100-1-1-1-1-12-1ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ9594ζ989ζ9792ζ9792ζ9594    orthogonal lifted from D9
ρ1420222200-1-1-1-1-1-1-1ζ9792ζ9792ζ9594ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9594ζ9594ζ989ζ989ζ9792ζ9792    orthogonal lifted from D9
ρ1520222200-1-1-1-1-1-1-1ζ9594ζ9594ζ989ζ989ζ989ζ9792ζ9792ζ9792ζ9594ζ989ζ989ζ9792ζ9792ζ9594ζ9594    orthogonal lifted from D9
ρ163-13-3+3-3/2-3-3-3/20ζ65ζ6333-3+3-3/2-3-3-3/200000000000000000    complex lifted from He3⋊C2
ρ173-13-3-3-3/2-3+3-3/20ζ6ζ65333-3-3-3/2-3+3-3/200000000000000000    complex lifted from He3⋊C2
ρ18313-3-3-3/2-3+3-3/20ζ32ζ3333-3-3-3/2-3+3-3/200000000000000000    complex lifted from He3⋊C2
ρ19313-3+3-3/2-3-3-3/20ζ3ζ32333-3+3-3/2-3-3-3/200000000000000000    complex lifted from He3⋊C2
ρ2060-3000002715+3ζ27122721+3ζ2762724+3ζ27300002726271027827ζ27192717+2ζ27827272527202716+2ζ2711ζ272527202711+2ζ2772725272027162722723+2ζ27222713275ζ2714+2ζ271327527427232713275274ζ2717+2ζ271027827000000    orthogonal faithful
ρ2160-3000002715+3ζ27122721+3ζ2762724+3ζ2730000ζ27192717+2ζ27827ζ2717+2ζ271027827ζ272527202711+2ζ277272527202716272272527202716+2ζ2711ζ2714+2ζ2713275274272327132752742723+2ζ272227132752726271027827000000    orthogonal faithful
ρ2260-3000002721+3ζ2762724+3ζ2732715+3ζ27120000ζ2714+2ζ271327527427232713275274ζ27192717+2ζ27827ζ2717+2ζ2710278272726271027827272527202716+2ζ2711ζ272527202711+2ζ2772725272027162722723+2ζ27222713275000000    orthogonal faithful
ρ2360-3000002724+3ζ2732715+3ζ27122721+3ζ2760000272527202716+2ζ2711ζ272527202711+2ζ277ζ2714+2ζ2713275274272327132752742723+2ζ272227132752726271027827ζ27192717+2ζ27827ζ2717+2ζ271027827272527202716272000000    orthogonal faithful
ρ2460-3000002721+3ζ2762724+3ζ2732715+3ζ271200002723+2ζ27222713275ζ2714+2ζ27132752742726271027827ζ27192717+2ζ27827ζ2717+2ζ271027827272527202716272272527202716+2ζ2711ζ272527202711+2ζ27727232713275274000000    orthogonal faithful
ρ2560-3000002724+3ζ2732715+3ζ27122721+3ζ2760000ζ272527202711+2ζ277272527202716272272327132752742723+2ζ27222713275ζ2714+2ζ2713275274ζ27192717+2ζ27827ζ2717+2ζ2710278272726271027827272527202716+2ζ2711000000    orthogonal faithful
ρ2660-3000002715+3ζ27122721+3ζ2762724+3ζ2730000ζ2717+2ζ2710278272726271027827272527202716272272527202716+2ζ2711ζ272527202711+2ζ277272327132752742723+2ζ27222713275ζ2714+2ζ2713275274ζ27192717+2ζ27827000000    orthogonal faithful
ρ2760-3000002724+3ζ2732715+3ζ27122721+3ζ2760000272527202716272272527202716+2ζ27112723+2ζ27222713275ζ2714+2ζ271327527427232713275274ζ2717+2ζ2710278272726271027827ζ27192717+2ζ27827ζ272527202711+2ζ277000000    orthogonal faithful
ρ2860-3000002721+3ζ2762724+3ζ2732715+3ζ27120000272327132752742723+2ζ27222713275ζ2717+2ζ2710278272726271027827ζ27192717+2ζ27827ζ272527202711+2ζ277272527202716272272527202716+2ζ2711ζ2714+2ζ2713275274000000    orthogonal faithful
ρ29606-3-3-3-3+3-3000-3-3-33+3-3/23-3-3/200000000000000000    complex lifted from C322D9
ρ30606-3+3-3-3-3-3000-3-3-33-3-3/23+3-3/200000000000000000    complex lifted from C322D9

Smallest permutation representation of He3.3D9
On 81 points
Generators in S81
(1 41 57)(2 51 76)(3 34 68)(4 44 60)(5 54 79)(6 37 71)(7 47 63)(8 30 55)(9 40 74)(10 50 66)(11 33 58)(12 43 77)(13 53 69)(14 36 61)(15 46 80)(16 29 72)(17 39 64)(18 49 56)(19 32 75)(20 42 67)(21 52 59)(22 35 78)(23 45 70)(24 28 62)(25 38 81)(26 48 73)(27 31 65)
(1 10 19)(2 11 20)(3 12 21)(4 13 22)(5 14 23)(6 15 24)(7 16 25)(8 17 26)(9 18 27)(28 37 46)(29 38 47)(30 39 48)(31 40 49)(32 41 50)(33 42 51)(34 43 52)(35 44 53)(36 45 54)(55 64 73)(56 65 74)(57 66 75)(58 67 76)(59 68 77)(60 69 78)(61 70 79)(62 71 80)(63 72 81)
(2 76 42)(3 43 68)(5 79 45)(6 46 71)(8 55 48)(9 49 74)(11 58 51)(12 52 77)(14 61 54)(15 28 80)(17 64 30)(18 31 56)(20 67 33)(21 34 59)(23 70 36)(24 37 62)(26 73 39)(27 40 65)(29 38 47)(32 41 50)(35 44 53)(57 75 66)(60 78 69)(63 81 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 27)(20 26)(21 25)(22 24)(28 44)(29 43)(30 42)(31 41)(32 40)(33 39)(34 38)(35 37)(45 54)(46 53)(47 52)(48 51)(49 50)(55 76)(56 75)(57 74)(58 73)(59 72)(60 71)(61 70)(62 69)(63 68)(64 67)(65 66)(77 81)(78 80)

G:=sub<Sym(81)| (1,41,57)(2,51,76)(3,34,68)(4,44,60)(5,54,79)(6,37,71)(7,47,63)(8,30,55)(9,40,74)(10,50,66)(11,33,58)(12,43,77)(13,53,69)(14,36,61)(15,46,80)(16,29,72)(17,39,64)(18,49,56)(19,32,75)(20,42,67)(21,52,59)(22,35,78)(23,45,70)(24,28,62)(25,38,81)(26,48,73)(27,31,65), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (2,76,42)(3,43,68)(5,79,45)(6,46,71)(8,55,48)(9,49,74)(11,58,51)(12,52,77)(14,61,54)(15,28,80)(17,64,30)(18,31,56)(20,67,33)(21,34,59)(23,70,36)(24,37,62)(26,73,39)(27,40,65)(29,38,47)(32,41,50)(35,44,53)(57,75,66)(60,78,69)(63,81,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(45,54)(46,53)(47,52)(48,51)(49,50)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(61,70)(62,69)(63,68)(64,67)(65,66)(77,81)(78,80)>;

G:=Group( (1,41,57)(2,51,76)(3,34,68)(4,44,60)(5,54,79)(6,37,71)(7,47,63)(8,30,55)(9,40,74)(10,50,66)(11,33,58)(12,43,77)(13,53,69)(14,36,61)(15,46,80)(16,29,72)(17,39,64)(18,49,56)(19,32,75)(20,42,67)(21,52,59)(22,35,78)(23,45,70)(24,28,62)(25,38,81)(26,48,73)(27,31,65), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (2,76,42)(3,43,68)(5,79,45)(6,46,71)(8,55,48)(9,49,74)(11,58,51)(12,52,77)(14,61,54)(15,28,80)(17,64,30)(18,31,56)(20,67,33)(21,34,59)(23,70,36)(24,37,62)(26,73,39)(27,40,65)(29,38,47)(32,41,50)(35,44,53)(57,75,66)(60,78,69)(63,81,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(45,54)(46,53)(47,52)(48,51)(49,50)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(61,70)(62,69)(63,68)(64,67)(65,66)(77,81)(78,80) );

G=PermutationGroup([[(1,41,57),(2,51,76),(3,34,68),(4,44,60),(5,54,79),(6,37,71),(7,47,63),(8,30,55),(9,40,74),(10,50,66),(11,33,58),(12,43,77),(13,53,69),(14,36,61),(15,46,80),(16,29,72),(17,39,64),(18,49,56),(19,32,75),(20,42,67),(21,52,59),(22,35,78),(23,45,70),(24,28,62),(25,38,81),(26,48,73),(27,31,65)], [(1,10,19),(2,11,20),(3,12,21),(4,13,22),(5,14,23),(6,15,24),(7,16,25),(8,17,26),(9,18,27),(28,37,46),(29,38,47),(30,39,48),(31,40,49),(32,41,50),(33,42,51),(34,43,52),(35,44,53),(36,45,54),(55,64,73),(56,65,74),(57,66,75),(58,67,76),(59,68,77),(60,69,78),(61,70,79),(62,71,80),(63,72,81)], [(2,76,42),(3,43,68),(5,79,45),(6,46,71),(8,55,48),(9,49,74),(11,58,51),(12,52,77),(14,61,54),(15,28,80),(17,64,30),(18,31,56),(20,67,33),(21,34,59),(23,70,36),(24,37,62),(26,73,39),(27,40,65),(29,38,47),(32,41,50),(35,44,53),(57,75,66),(60,78,69),(63,81,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,27),(20,26),(21,25),(22,24),(28,44),(29,43),(30,42),(31,41),(32,40),(33,39),(34,38),(35,37),(45,54),(46,53),(47,52),(48,51),(49,50),(55,76),(56,75),(57,74),(58,73),(59,72),(60,71),(61,70),(62,69),(63,68),(64,67),(65,66),(77,81),(78,80)]])

Matrix representation of He3.3D9 in GL6(𝔽109)

001000
000100
000010
000001
100000
010000
,
1081080000
100000
0010810800
001000
0000108108
000010
,
100000
010000
000100
0010810800
0000108108
000010
,
751246347512
976375129763
463446349763
751275124634
751297639763
976346344634
,
463497634634
976375129763
976397637512
751275124634
463475127512
976346344634

G:=sub<GL(6,GF(109))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[108,1,0,0,0,0,108,0,0,0,0,0,0,0,108,1,0,0,0,0,108,0,0,0,0,0,0,0,108,1,0,0,0,0,108,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,108,0,0,0,0,1,108,0,0,0,0,0,0,108,1,0,0,0,0,108,0],[75,97,46,75,75,97,12,63,34,12,12,63,46,75,46,75,97,46,34,12,34,12,63,34,75,97,97,46,97,46,12,63,63,34,63,34],[46,97,97,75,46,97,34,63,63,12,34,63,97,75,97,75,75,46,63,12,63,12,12,34,46,97,75,46,75,46,34,63,12,34,12,34] >;

He3.3D9 in GAP, Magma, Sage, TeX

{\rm He}_3._3D_9
% in TeX

G:=Group("He3.3D9");
// GroupNames label

G:=SmallGroup(486,58);
// by ID

G=gap.SmallGroup(486,58);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,265,2167,218,548,8643,237,3250,1906,11669]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^2=1,d^9=b,d*a*d^-1=e*a*e=a*b=b*a,c*a*c^-1=a*b^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=a^-1*c,e*c*e=a*b*c^-1,e*d*e=b^-1*d^8>;
// generators/relations

Export

Subgroup lattice of He3.3D9 in TeX
Character table of He3.3D9 in TeX

׿
×
𝔽