non-abelian, supersoluble, monomial
Aliases: He3.3D9, 3- 1+2.1D9, C27⋊C3⋊2S3, (C3×C27)⋊5S3, C9○He3.3S3, C9.5He3⋊1C2, C32.3(C9⋊S3), C9.3(He3⋊C2), C3.9(C32⋊2D9), (C3×C9).10(C3⋊S3), SmallGroup(486,58)
Series: Derived ►Chief ►Lower central ►Upper central
C9.5He3 — He3.3D9 |
Generators and relations for He3.3D9
G = < a,b,c,d,e | a3=b3=c3=e2=1, d9=b, dad-1=eae=ab=ba, cac-1=ab-1, bc=cb, bd=db, ebe=b-1, dcd-1=a-1c, ece=abc-1, ede=b-1d8 >
Character table of He3.3D9
class | 1 | 2 | 3A | 3B | 3C | 3D | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 27A | 27B | 27C | 27D | 27E | 27F | 27G | 27H | 27I | 27J | 27K | 27L | 27M | 27N | 27O | |
size | 1 | 81 | 2 | 3 | 3 | 18 | 81 | 81 | 2 | 2 | 2 | 6 | 6 | 18 | 18 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 2 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ8 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ9 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ10 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ11 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ12 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ13 | 2 | 0 | 2 | 2 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ14 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ15 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ16 | 3 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | ζ65 | ζ6 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ17 | 3 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | ζ6 | ζ65 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ18 | 3 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | ζ32 | ζ3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ19 | 3 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | ζ3 | ζ32 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ20 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2715+3ζ2712 | 3ζ2721+3ζ276 | 3ζ2724+3ζ273 | 0 | 0 | 0 | 0 | 2ζ2726-ζ2710+ζ278+ζ27 | ζ2719+ζ2717+2ζ278-ζ27 | -ζ2725+ζ2720+ζ2716+2ζ2711 | ζ2725+ζ2720-ζ2711+2ζ277 | 2ζ2725-ζ2720+ζ2716+ζ272 | -ζ2723+2ζ2722+ζ2713+ζ275 | ζ2714+2ζ2713-ζ275+ζ274 | 2ζ2723-ζ2713+ζ275+ζ274 | ζ2717+2ζ2710-ζ278+ζ27 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ21 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2715+3ζ2712 | 3ζ2721+3ζ276 | 3ζ2724+3ζ273 | 0 | 0 | 0 | 0 | ζ2719+ζ2717+2ζ278-ζ27 | ζ2717+2ζ2710-ζ278+ζ27 | ζ2725+ζ2720-ζ2711+2ζ277 | 2ζ2725-ζ2720+ζ2716+ζ272 | -ζ2725+ζ2720+ζ2716+2ζ2711 | ζ2714+2ζ2713-ζ275+ζ274 | 2ζ2723-ζ2713+ζ275+ζ274 | -ζ2723+2ζ2722+ζ2713+ζ275 | 2ζ2726-ζ2710+ζ278+ζ27 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ22 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2721+3ζ276 | 3ζ2724+3ζ273 | 3ζ2715+3ζ2712 | 0 | 0 | 0 | 0 | ζ2714+2ζ2713-ζ275+ζ274 | 2ζ2723-ζ2713+ζ275+ζ274 | ζ2719+ζ2717+2ζ278-ζ27 | ζ2717+2ζ2710-ζ278+ζ27 | 2ζ2726-ζ2710+ζ278+ζ27 | -ζ2725+ζ2720+ζ2716+2ζ2711 | ζ2725+ζ2720-ζ2711+2ζ277 | 2ζ2725-ζ2720+ζ2716+ζ272 | -ζ2723+2ζ2722+ζ2713+ζ275 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2724+3ζ273 | 3ζ2715+3ζ2712 | 3ζ2721+3ζ276 | 0 | 0 | 0 | 0 | -ζ2725+ζ2720+ζ2716+2ζ2711 | ζ2725+ζ2720-ζ2711+2ζ277 | ζ2714+2ζ2713-ζ275+ζ274 | 2ζ2723-ζ2713+ζ275+ζ274 | -ζ2723+2ζ2722+ζ2713+ζ275 | 2ζ2726-ζ2710+ζ278+ζ27 | ζ2719+ζ2717+2ζ278-ζ27 | ζ2717+2ζ2710-ζ278+ζ27 | 2ζ2725-ζ2720+ζ2716+ζ272 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2721+3ζ276 | 3ζ2724+3ζ273 | 3ζ2715+3ζ2712 | 0 | 0 | 0 | 0 | -ζ2723+2ζ2722+ζ2713+ζ275 | ζ2714+2ζ2713-ζ275+ζ274 | 2ζ2726-ζ2710+ζ278+ζ27 | ζ2719+ζ2717+2ζ278-ζ27 | ζ2717+2ζ2710-ζ278+ζ27 | 2ζ2725-ζ2720+ζ2716+ζ272 | -ζ2725+ζ2720+ζ2716+2ζ2711 | ζ2725+ζ2720-ζ2711+2ζ277 | 2ζ2723-ζ2713+ζ275+ζ274 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2724+3ζ273 | 3ζ2715+3ζ2712 | 3ζ2721+3ζ276 | 0 | 0 | 0 | 0 | ζ2725+ζ2720-ζ2711+2ζ277 | 2ζ2725-ζ2720+ζ2716+ζ272 | 2ζ2723-ζ2713+ζ275+ζ274 | -ζ2723+2ζ2722+ζ2713+ζ275 | ζ2714+2ζ2713-ζ275+ζ274 | ζ2719+ζ2717+2ζ278-ζ27 | ζ2717+2ζ2710-ζ278+ζ27 | 2ζ2726-ζ2710+ζ278+ζ27 | -ζ2725+ζ2720+ζ2716+2ζ2711 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2715+3ζ2712 | 3ζ2721+3ζ276 | 3ζ2724+3ζ273 | 0 | 0 | 0 | 0 | ζ2717+2ζ2710-ζ278+ζ27 | 2ζ2726-ζ2710+ζ278+ζ27 | 2ζ2725-ζ2720+ζ2716+ζ272 | -ζ2725+ζ2720+ζ2716+2ζ2711 | ζ2725+ζ2720-ζ2711+2ζ277 | 2ζ2723-ζ2713+ζ275+ζ274 | -ζ2723+2ζ2722+ζ2713+ζ275 | ζ2714+2ζ2713-ζ275+ζ274 | ζ2719+ζ2717+2ζ278-ζ27 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ27 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2724+3ζ273 | 3ζ2715+3ζ2712 | 3ζ2721+3ζ276 | 0 | 0 | 0 | 0 | 2ζ2725-ζ2720+ζ2716+ζ272 | -ζ2725+ζ2720+ζ2716+2ζ2711 | -ζ2723+2ζ2722+ζ2713+ζ275 | ζ2714+2ζ2713-ζ275+ζ274 | 2ζ2723-ζ2713+ζ275+ζ274 | ζ2717+2ζ2710-ζ278+ζ27 | 2ζ2726-ζ2710+ζ278+ζ27 | ζ2719+ζ2717+2ζ278-ζ27 | ζ2725+ζ2720-ζ2711+2ζ277 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ2721+3ζ276 | 3ζ2724+3ζ273 | 3ζ2715+3ζ2712 | 0 | 0 | 0 | 0 | 2ζ2723-ζ2713+ζ275+ζ274 | -ζ2723+2ζ2722+ζ2713+ζ275 | ζ2717+2ζ2710-ζ278+ζ27 | 2ζ2726-ζ2710+ζ278+ζ27 | ζ2719+ζ2717+2ζ278-ζ27 | ζ2725+ζ2720-ζ2711+2ζ277 | 2ζ2725-ζ2720+ζ2716+ζ272 | -ζ2725+ζ2720+ζ2716+2ζ2711 | ζ2714+2ζ2713-ζ275+ζ274 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 6 | 0 | 6 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | -3 | -3 | -3 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D9 |
ρ30 | 6 | 0 | 6 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | -3 | -3 | -3 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D9 |
(1 41 57)(2 51 76)(3 34 68)(4 44 60)(5 54 79)(6 37 71)(7 47 63)(8 30 55)(9 40 74)(10 50 66)(11 33 58)(12 43 77)(13 53 69)(14 36 61)(15 46 80)(16 29 72)(17 39 64)(18 49 56)(19 32 75)(20 42 67)(21 52 59)(22 35 78)(23 45 70)(24 28 62)(25 38 81)(26 48 73)(27 31 65)
(1 10 19)(2 11 20)(3 12 21)(4 13 22)(5 14 23)(6 15 24)(7 16 25)(8 17 26)(9 18 27)(28 37 46)(29 38 47)(30 39 48)(31 40 49)(32 41 50)(33 42 51)(34 43 52)(35 44 53)(36 45 54)(55 64 73)(56 65 74)(57 66 75)(58 67 76)(59 68 77)(60 69 78)(61 70 79)(62 71 80)(63 72 81)
(2 76 42)(3 43 68)(5 79 45)(6 46 71)(8 55 48)(9 49 74)(11 58 51)(12 52 77)(14 61 54)(15 28 80)(17 64 30)(18 31 56)(20 67 33)(21 34 59)(23 70 36)(24 37 62)(26 73 39)(27 40 65)(29 38 47)(32 41 50)(35 44 53)(57 75 66)(60 78 69)(63 81 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 27)(20 26)(21 25)(22 24)(28 44)(29 43)(30 42)(31 41)(32 40)(33 39)(34 38)(35 37)(45 54)(46 53)(47 52)(48 51)(49 50)(55 76)(56 75)(57 74)(58 73)(59 72)(60 71)(61 70)(62 69)(63 68)(64 67)(65 66)(77 81)(78 80)
G:=sub<Sym(81)| (1,41,57)(2,51,76)(3,34,68)(4,44,60)(5,54,79)(6,37,71)(7,47,63)(8,30,55)(9,40,74)(10,50,66)(11,33,58)(12,43,77)(13,53,69)(14,36,61)(15,46,80)(16,29,72)(17,39,64)(18,49,56)(19,32,75)(20,42,67)(21,52,59)(22,35,78)(23,45,70)(24,28,62)(25,38,81)(26,48,73)(27,31,65), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (2,76,42)(3,43,68)(5,79,45)(6,46,71)(8,55,48)(9,49,74)(11,58,51)(12,52,77)(14,61,54)(15,28,80)(17,64,30)(18,31,56)(20,67,33)(21,34,59)(23,70,36)(24,37,62)(26,73,39)(27,40,65)(29,38,47)(32,41,50)(35,44,53)(57,75,66)(60,78,69)(63,81,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(45,54)(46,53)(47,52)(48,51)(49,50)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(61,70)(62,69)(63,68)(64,67)(65,66)(77,81)(78,80)>;
G:=Group( (1,41,57)(2,51,76)(3,34,68)(4,44,60)(5,54,79)(6,37,71)(7,47,63)(8,30,55)(9,40,74)(10,50,66)(11,33,58)(12,43,77)(13,53,69)(14,36,61)(15,46,80)(16,29,72)(17,39,64)(18,49,56)(19,32,75)(20,42,67)(21,52,59)(22,35,78)(23,45,70)(24,28,62)(25,38,81)(26,48,73)(27,31,65), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (2,76,42)(3,43,68)(5,79,45)(6,46,71)(8,55,48)(9,49,74)(11,58,51)(12,52,77)(14,61,54)(15,28,80)(17,64,30)(18,31,56)(20,67,33)(21,34,59)(23,70,36)(24,37,62)(26,73,39)(27,40,65)(29,38,47)(32,41,50)(35,44,53)(57,75,66)(60,78,69)(63,81,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(45,54)(46,53)(47,52)(48,51)(49,50)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(61,70)(62,69)(63,68)(64,67)(65,66)(77,81)(78,80) );
G=PermutationGroup([[(1,41,57),(2,51,76),(3,34,68),(4,44,60),(5,54,79),(6,37,71),(7,47,63),(8,30,55),(9,40,74),(10,50,66),(11,33,58),(12,43,77),(13,53,69),(14,36,61),(15,46,80),(16,29,72),(17,39,64),(18,49,56),(19,32,75),(20,42,67),(21,52,59),(22,35,78),(23,45,70),(24,28,62),(25,38,81),(26,48,73),(27,31,65)], [(1,10,19),(2,11,20),(3,12,21),(4,13,22),(5,14,23),(6,15,24),(7,16,25),(8,17,26),(9,18,27),(28,37,46),(29,38,47),(30,39,48),(31,40,49),(32,41,50),(33,42,51),(34,43,52),(35,44,53),(36,45,54),(55,64,73),(56,65,74),(57,66,75),(58,67,76),(59,68,77),(60,69,78),(61,70,79),(62,71,80),(63,72,81)], [(2,76,42),(3,43,68),(5,79,45),(6,46,71),(8,55,48),(9,49,74),(11,58,51),(12,52,77),(14,61,54),(15,28,80),(17,64,30),(18,31,56),(20,67,33),(21,34,59),(23,70,36),(24,37,62),(26,73,39),(27,40,65),(29,38,47),(32,41,50),(35,44,53),(57,75,66),(60,78,69),(63,81,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,27),(20,26),(21,25),(22,24),(28,44),(29,43),(30,42),(31,41),(32,40),(33,39),(34,38),(35,37),(45,54),(46,53),(47,52),(48,51),(49,50),(55,76),(56,75),(57,74),(58,73),(59,72),(60,71),(61,70),(62,69),(63,68),(64,67),(65,66),(77,81),(78,80)]])
Matrix representation of He3.3D9 ►in GL6(𝔽109)
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
108 | 108 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 108 | 108 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 108 | 108 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 108 | 108 | 0 | 0 |
0 | 0 | 0 | 0 | 108 | 108 |
0 | 0 | 0 | 0 | 1 | 0 |
75 | 12 | 46 | 34 | 75 | 12 |
97 | 63 | 75 | 12 | 97 | 63 |
46 | 34 | 46 | 34 | 97 | 63 |
75 | 12 | 75 | 12 | 46 | 34 |
75 | 12 | 97 | 63 | 97 | 63 |
97 | 63 | 46 | 34 | 46 | 34 |
46 | 34 | 97 | 63 | 46 | 34 |
97 | 63 | 75 | 12 | 97 | 63 |
97 | 63 | 97 | 63 | 75 | 12 |
75 | 12 | 75 | 12 | 46 | 34 |
46 | 34 | 75 | 12 | 75 | 12 |
97 | 63 | 46 | 34 | 46 | 34 |
G:=sub<GL(6,GF(109))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[108,1,0,0,0,0,108,0,0,0,0,0,0,0,108,1,0,0,0,0,108,0,0,0,0,0,0,0,108,1,0,0,0,0,108,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,108,0,0,0,0,1,108,0,0,0,0,0,0,108,1,0,0,0,0,108,0],[75,97,46,75,75,97,12,63,34,12,12,63,46,75,46,75,97,46,34,12,34,12,63,34,75,97,97,46,97,46,12,63,63,34,63,34],[46,97,97,75,46,97,34,63,63,12,34,63,97,75,97,75,75,46,63,12,63,12,12,34,46,97,75,46,75,46,34,63,12,34,12,34] >;
He3.3D9 in GAP, Magma, Sage, TeX
{\rm He}_3._3D_9
% in TeX
G:=Group("He3.3D9");
// GroupNames label
G:=SmallGroup(486,58);
// by ID
G=gap.SmallGroup(486,58);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,265,2167,218,548,8643,237,3250,1906,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^2=1,d^9=b,d*a*d^-1=e*a*e=a*b=b*a,c*a*c^-1=a*b^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=a^-1*c,e*c*e=a*b*c^-1,e*d*e=b^-1*d^8>;
// generators/relations
Export
Subgroup lattice of He3.3D9 in TeX
Character table of He3.3D9 in TeX