Copied to
clipboard

G = C252F5order 500 = 22·53

2nd semidirect product of C25 and F5 acting via F5/C5=C4

metabelian, supersoluble, monomial, A-group

Aliases: C252F5, C52.5F5, (C5×C25)⋊6C4, C52(C25⋊C4), C25⋊D5.2C2, C5.(C52⋊C4), SmallGroup(500,24)

Series: Derived Chief Lower central Upper central

C1C5×C25 — C252F5
C1C5C52C5×C25C25⋊D5 — C252F5
C5×C25 — C252F5
C1

Generators and relations for C252F5
 G = < a,b,c | a25=b5=c4=1, ab=ba, cac-1=a7, cbc-1=b3 >

125C2
2C5
2C5
125C4
25D5
25D5
50D5
50D5
2C25
2C25
25F5
25F5
5C5⋊D5
5D25
10D25
10D25
5C25⋊C4
5C52⋊C4

Smallest permutation representation of C252F5
On 50 points
Generators in S50
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)
(1 6 11 16 21)(2 7 12 17 22)(3 8 13 18 23)(4 9 14 19 24)(5 10 15 20 25)(26 46 41 36 31)(27 47 42 37 32)(28 48 43 38 33)(29 49 44 39 34)(30 50 45 40 35)
(1 26)(2 44 25 33)(3 37 24 40)(4 30 23 47)(5 48 22 29)(6 41 21 36)(7 34 20 43)(8 27 19 50)(9 45 18 32)(10 38 17 39)(11 31 16 46)(12 49 15 28)(13 42 14 35)

G:=sub<Sym(50)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)(5,10,15,20,25)(26,46,41,36,31)(27,47,42,37,32)(28,48,43,38,33)(29,49,44,39,34)(30,50,45,40,35), (1,26)(2,44,25,33)(3,37,24,40)(4,30,23,47)(5,48,22,29)(6,41,21,36)(7,34,20,43)(8,27,19,50)(9,45,18,32)(10,38,17,39)(11,31,16,46)(12,49,15,28)(13,42,14,35)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)(5,10,15,20,25)(26,46,41,36,31)(27,47,42,37,32)(28,48,43,38,33)(29,49,44,39,34)(30,50,45,40,35), (1,26)(2,44,25,33)(3,37,24,40)(4,30,23,47)(5,48,22,29)(6,41,21,36)(7,34,20,43)(8,27,19,50)(9,45,18,32)(10,38,17,39)(11,31,16,46)(12,49,15,28)(13,42,14,35) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)], [(1,6,11,16,21),(2,7,12,17,22),(3,8,13,18,23),(4,9,14,19,24),(5,10,15,20,25),(26,46,41,36,31),(27,47,42,37,32),(28,48,43,38,33),(29,49,44,39,34),(30,50,45,40,35)], [(1,26),(2,44,25,33),(3,37,24,40),(4,30,23,47),(5,48,22,29),(6,41,21,36),(7,34,20,43),(8,27,19,50),(9,45,18,32),(10,38,17,39),(11,31,16,46),(12,49,15,28),(13,42,14,35)]])

35 conjugacy classes

class 1  2 4A4B5A···5F25A···25Y
order12445···525···25
size11251251254···44···4

35 irreducible representations

dim11144444
type+++++++
imageC1C2C4F5F5C25⋊C4C52⋊C4C252F5
kernelC252F5C25⋊D5C5×C25C25C52C5C5C1
# reps112115420

Matrix representation of C252F5 in GL4(𝔽101) generated by

995000
518800
001132
00698
,
1002200
797900
0022100
0010
,
0010
0001
329300
906900
G:=sub<GL(4,GF(101))| [99,51,0,0,50,88,0,0,0,0,11,69,0,0,32,8],[100,79,0,0,22,79,0,0,0,0,22,1,0,0,100,0],[0,0,32,90,0,0,93,69,1,0,0,0,0,1,0,0] >;

C252F5 in GAP, Magma, Sage, TeX

C_{25}\rtimes_2F_5
% in TeX

G:=Group("C25:2F5");
// GroupNames label

G:=SmallGroup(500,24);
// by ID

G=gap.SmallGroup(500,24);
# by ID

G:=PCGroup([5,-2,-2,-5,-5,-5,10,1682,2377,762,803,808,7504,5009]);
// Polycyclic

G:=Group<a,b,c|a^25=b^5=c^4=1,a*b=b*a,c*a*c^-1=a^7,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C252F5 in TeX

׿
×
𝔽