Copied to
clipboard

G = C2×D4×Q8order 128 = 27

Direct product of C2, D4 and Q8

direct product, p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: C2×D4×Q8, C22.55C25, C42.554C23, C23.125C24, C24.615C23, C22.812- 1+4, C42(C22×Q8), C236(C2×Q8), C4⋊Q882C22, (C2×C4).57C24, (Q8×C23)⋊11C2, (C4×Q8)⋊91C22, C2.22(D4×C23), C2.10(Q8×C23), C4⋊C4.467C23, C222(C22×Q8), C4.111(C22×D4), C22⋊Q885C22, (C4×D4).350C22, (C2×D4).501C23, C22⋊C4.82C23, (C2×Q8).430C23, (C22×Q8)⋊63C22, (C2×C42).926C22, (C23×C4).595C22, C22.162(C22×D4), C2.13(C2×2- 1+4), (C22×C4).1192C23, (C22×D4).615C22, (C2×C4×Q8)⋊50C2, (C2×C4⋊Q8)⋊51C2, (C2×C4)⋊11(C2×Q8), (C2×C4×D4).86C2, (C2×Q8)(C22×D4), (C2×D4)(C22×Q8), (C2×C22⋊Q8)⋊70C2, (C2×C4).1111(C2×D4), (C22×D4)(C22×Q8), (C2×C4⋊C4).955C22, (C2×C22⋊C4).538C22, SmallGroup(128,2198)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2×D4×Q8
C1C2C22C23C22×C4C23×C4Q8×C23 — C2×D4×Q8
C1C22 — C2×D4×Q8
C1C23 — C2×D4×Q8
C1C22 — C2×D4×Q8

Generators and relations for C2×D4×Q8
 G = < a,b,c,d,e | a2=b4=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 1084 in 784 conjugacy classes, 484 normal (11 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C4×Q8, C22⋊Q8, C4⋊Q8, C23×C4, C22×D4, C22×Q8, C22×Q8, C22×Q8, C2×C4×D4, C2×C4×Q8, C2×C22⋊Q8, C2×C4⋊Q8, D4×Q8, Q8×C23, C2×D4×Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C24, C22×D4, C22×Q8, 2- 1+4, C25, D4×Q8, D4×C23, Q8×C23, C2×2- 1+4, C2×D4×Q8

Smallest permutation representation of C2×D4×Q8
On 64 points
Generators in S64
(1 14)(2 15)(3 16)(4 13)(5 32)(6 29)(7 30)(8 31)(9 33)(10 34)(11 35)(12 36)(17 43)(18 44)(19 41)(20 42)(21 25)(22 26)(23 27)(24 28)(37 45)(38 46)(39 47)(40 48)(49 64)(50 61)(51 62)(52 63)(53 57)(54 58)(55 59)(56 60)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 16)(2 15)(3 14)(4 13)(5 32)(6 31)(7 30)(8 29)(9 33)(10 36)(11 35)(12 34)(17 43)(18 42)(19 41)(20 44)(21 27)(22 26)(23 25)(24 28)(37 45)(38 48)(39 47)(40 46)(49 64)(50 63)(51 62)(52 61)(53 59)(54 58)(55 57)(56 60)
(1 36 25 8)(2 33 26 5)(3 34 27 6)(4 35 28 7)(9 22 32 15)(10 23 29 16)(11 24 30 13)(12 21 31 14)(17 37 51 60)(18 38 52 57)(19 39 49 58)(20 40 50 59)(41 47 64 54)(42 48 61 55)(43 45 62 56)(44 46 63 53)
(1 48 25 55)(2 45 26 56)(3 46 27 53)(4 47 28 54)(5 62 33 43)(6 63 34 44)(7 64 35 41)(8 61 36 42)(9 17 32 51)(10 18 29 52)(11 19 30 49)(12 20 31 50)(13 39 24 58)(14 40 21 59)(15 37 22 60)(16 38 23 57)

G:=sub<Sym(64)| (1,14)(2,15)(3,16)(4,13)(5,32)(6,29)(7,30)(8,31)(9,33)(10,34)(11,35)(12,36)(17,43)(18,44)(19,41)(20,42)(21,25)(22,26)(23,27)(24,28)(37,45)(38,46)(39,47)(40,48)(49,64)(50,61)(51,62)(52,63)(53,57)(54,58)(55,59)(56,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,16)(2,15)(3,14)(4,13)(5,32)(6,31)(7,30)(8,29)(9,33)(10,36)(11,35)(12,34)(17,43)(18,42)(19,41)(20,44)(21,27)(22,26)(23,25)(24,28)(37,45)(38,48)(39,47)(40,46)(49,64)(50,63)(51,62)(52,61)(53,59)(54,58)(55,57)(56,60), (1,36,25,8)(2,33,26,5)(3,34,27,6)(4,35,28,7)(9,22,32,15)(10,23,29,16)(11,24,30,13)(12,21,31,14)(17,37,51,60)(18,38,52,57)(19,39,49,58)(20,40,50,59)(41,47,64,54)(42,48,61,55)(43,45,62,56)(44,46,63,53), (1,48,25,55)(2,45,26,56)(3,46,27,53)(4,47,28,54)(5,62,33,43)(6,63,34,44)(7,64,35,41)(8,61,36,42)(9,17,32,51)(10,18,29,52)(11,19,30,49)(12,20,31,50)(13,39,24,58)(14,40,21,59)(15,37,22,60)(16,38,23,57)>;

G:=Group( (1,14)(2,15)(3,16)(4,13)(5,32)(6,29)(7,30)(8,31)(9,33)(10,34)(11,35)(12,36)(17,43)(18,44)(19,41)(20,42)(21,25)(22,26)(23,27)(24,28)(37,45)(38,46)(39,47)(40,48)(49,64)(50,61)(51,62)(52,63)(53,57)(54,58)(55,59)(56,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,16)(2,15)(3,14)(4,13)(5,32)(6,31)(7,30)(8,29)(9,33)(10,36)(11,35)(12,34)(17,43)(18,42)(19,41)(20,44)(21,27)(22,26)(23,25)(24,28)(37,45)(38,48)(39,47)(40,46)(49,64)(50,63)(51,62)(52,61)(53,59)(54,58)(55,57)(56,60), (1,36,25,8)(2,33,26,5)(3,34,27,6)(4,35,28,7)(9,22,32,15)(10,23,29,16)(11,24,30,13)(12,21,31,14)(17,37,51,60)(18,38,52,57)(19,39,49,58)(20,40,50,59)(41,47,64,54)(42,48,61,55)(43,45,62,56)(44,46,63,53), (1,48,25,55)(2,45,26,56)(3,46,27,53)(4,47,28,54)(5,62,33,43)(6,63,34,44)(7,64,35,41)(8,61,36,42)(9,17,32,51)(10,18,29,52)(11,19,30,49)(12,20,31,50)(13,39,24,58)(14,40,21,59)(15,37,22,60)(16,38,23,57) );

G=PermutationGroup([[(1,14),(2,15),(3,16),(4,13),(5,32),(6,29),(7,30),(8,31),(9,33),(10,34),(11,35),(12,36),(17,43),(18,44),(19,41),(20,42),(21,25),(22,26),(23,27),(24,28),(37,45),(38,46),(39,47),(40,48),(49,64),(50,61),(51,62),(52,63),(53,57),(54,58),(55,59),(56,60)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,16),(2,15),(3,14),(4,13),(5,32),(6,31),(7,30),(8,29),(9,33),(10,36),(11,35),(12,34),(17,43),(18,42),(19,41),(20,44),(21,27),(22,26),(23,25),(24,28),(37,45),(38,48),(39,47),(40,46),(49,64),(50,63),(51,62),(52,61),(53,59),(54,58),(55,57),(56,60)], [(1,36,25,8),(2,33,26,5),(3,34,27,6),(4,35,28,7),(9,22,32,15),(10,23,29,16),(11,24,30,13),(12,21,31,14),(17,37,51,60),(18,38,52,57),(19,39,49,58),(20,40,50,59),(41,47,64,54),(42,48,61,55),(43,45,62,56),(44,46,63,53)], [(1,48,25,55),(2,45,26,56),(3,46,27,53),(4,47,28,54),(5,62,33,43),(6,63,34,44),(7,64,35,41),(8,61,36,42),(9,17,32,51),(10,18,29,52),(11,19,30,49),(12,20,31,50),(13,39,24,58),(14,40,21,59),(15,37,22,60),(16,38,23,57)]])

50 conjugacy classes

class 1 2A···2G2H···2O4A···4P4Q···4AH
order12···22···24···44···4
size11···12···22···24···4

50 irreducible representations

dim1111111224
type+++++++-+-
imageC1C2C2C2C2C2C2Q8D42- 1+4
kernelC2×D4×Q8C2×C4×D4C2×C4×Q8C2×C22⋊Q8C2×C4⋊Q8D4×Q8Q8×C23C2×D4C2×Q8C22
# reps13163162882

Matrix representation of C2×D4×Q8 in GL5(𝔽5)

40000
04000
00400
00010
00001
,
40000
00400
01000
00040
00004
,
10000
01000
00400
00010
00001
,
40000
01000
00100
00004
00010
,
10000
04000
00400
00003
00030

G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[4,0,0,0,0,0,0,1,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,4,0],[1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,0,3,0,0,0,3,0] >;

C2×D4×Q8 in GAP, Magma, Sage, TeX

C_2\times D_4\times Q_8
% in TeX

G:=Group("C2xD4xQ8");
// GroupNames label

G:=SmallGroup(128,2198);
// by ID

G=gap.SmallGroup(128,2198);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,224,477,232,1430,570,136]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽