Copied to
clipboard

G = (C2×C8)⋊Q8order 128 = 27

6th semidirect product of C2×C8 and Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4⋊C42Q8, (C2×C8)⋊6Q8, C2.7(C8⋊Q8), C4⋊C4.100D4, C4.22(C4⋊Q8), C2.4(C83Q8), (C2×C4).36SD16, C4.7(C22⋊Q8), C2.7(Q8⋊Q8), C2.7(D42Q8), (C22×C4).316D4, C23.920(C2×D4), C22.49(C4⋊Q8), C2.23(Q8⋊D4), C2.23(C22⋊SD16), C22.228C22≀C2, C22.4Q16.43C2, (C2×C42).372C22, (C22×C8).323C22, C22.100(C2×SD16), C22.143(C8⋊C22), (C22×C4).1454C23, C22.107(C22⋊Q8), C22.132(C8.C22), C22.7C42.35C2, C23.65C23.16C2, C2.5(C23.78C23), (C2×C4⋊Q8).22C2, (C2×C4).218(C2×Q8), (C2×C4.Q8).22C2, (C2×C4).1049(C2×D4), (C2×C4).776(C4○D4), (C2×C4⋊C4).135C22, SmallGroup(128,790)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — (C2×C8)⋊Q8
C1C2C22C2×C4C22×C4C2×C4⋊C4C23.65C23 — (C2×C8)⋊Q8
C1C2C22×C4 — (C2×C8)⋊Q8
C1C23C2×C42 — (C2×C8)⋊Q8
C1C2C2C22×C4 — (C2×C8)⋊Q8

Generators and relations for (C2×C8)⋊Q8
 G = < a,b,c,d | a2=b8=c4=1, d2=c2, dbd-1=ab=ba, ac=ca, ad=da, cbc-1=b3, dcd-1=c-1 >

Subgroups: 288 in 141 conjugacy classes, 58 normal (28 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×Q8, C2.C42, C4.Q8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4⋊Q8, C22×C8, C22×Q8, C22.7C42, C22.4Q16, C23.65C23, C2×C4.Q8, C2×C4⋊Q8, (C2×C8)⋊Q8
Quotients: C1, C2, C22, D4, Q8, C23, SD16, C2×D4, C2×Q8, C4○D4, C22≀C2, C22⋊Q8, C4⋊Q8, C2×SD16, C8⋊C22, C8.C22, C23.78C23, Q8⋊D4, C22⋊SD16, Q8⋊Q8, D42Q8, C83Q8, C8⋊Q8, (C2×C8)⋊Q8

Smallest permutation representation of (C2×C8)⋊Q8
Regular action on 128 points
Generators in S128
(1 117)(2 118)(3 119)(4 120)(5 113)(6 114)(7 115)(8 116)(9 61)(10 62)(11 63)(12 64)(13 57)(14 58)(15 59)(16 60)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(31 40)(32 33)(49 123)(50 124)(51 125)(52 126)(53 127)(54 128)(55 121)(56 122)(65 110)(66 111)(67 112)(68 105)(69 106)(70 107)(71 108)(72 109)(73 102)(74 103)(75 104)(76 97)(77 98)(78 99)(79 100)(80 101)(81 96)(82 89)(83 90)(84 91)(85 92)(86 93)(87 94)(88 95)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 16 53 106)(2 11 54 109)(3 14 55 112)(4 9 56 107)(5 12 49 110)(6 15 50 105)(7 10 51 108)(8 13 52 111)(17 89 100 30)(18 92 101 25)(19 95 102 28)(20 90 103 31)(21 93 104 26)(22 96 97 29)(23 91 98 32)(24 94 99 27)(33 47 84 77)(34 42 85 80)(35 45 86 75)(36 48 87 78)(37 43 88 73)(38 46 81 76)(39 41 82 79)(40 44 83 74)(57 126 66 116)(58 121 67 119)(59 124 68 114)(60 127 69 117)(61 122 70 120)(62 125 71 115)(63 128 72 118)(64 123 65 113)
(1 103 53 20)(2 75 54 45)(3 97 55 22)(4 77 56 47)(5 99 49 24)(6 79 50 41)(7 101 51 18)(8 73 52 43)(9 84 107 33)(10 92 108 25)(11 86 109 35)(12 94 110 27)(13 88 111 37)(14 96 112 29)(15 82 105 39)(16 90 106 31)(17 114 100 124)(19 116 102 126)(21 118 104 128)(23 120 98 122)(26 63 93 72)(28 57 95 66)(30 59 89 68)(32 61 91 70)(34 62 85 71)(36 64 87 65)(38 58 81 67)(40 60 83 69)(42 115 80 125)(44 117 74 127)(46 119 76 121)(48 113 78 123)

G:=sub<Sym(128)| (1,117)(2,118)(3,119)(4,120)(5,113)(6,114)(7,115)(8,116)(9,61)(10,62)(11,63)(12,64)(13,57)(14,58)(15,59)(16,60)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,121)(56,122)(65,110)(66,111)(67,112)(68,105)(69,106)(70,107)(71,108)(72,109)(73,102)(74,103)(75,104)(76,97)(77,98)(78,99)(79,100)(80,101)(81,96)(82,89)(83,90)(84,91)(85,92)(86,93)(87,94)(88,95), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,16,53,106)(2,11,54,109)(3,14,55,112)(4,9,56,107)(5,12,49,110)(6,15,50,105)(7,10,51,108)(8,13,52,111)(17,89,100,30)(18,92,101,25)(19,95,102,28)(20,90,103,31)(21,93,104,26)(22,96,97,29)(23,91,98,32)(24,94,99,27)(33,47,84,77)(34,42,85,80)(35,45,86,75)(36,48,87,78)(37,43,88,73)(38,46,81,76)(39,41,82,79)(40,44,83,74)(57,126,66,116)(58,121,67,119)(59,124,68,114)(60,127,69,117)(61,122,70,120)(62,125,71,115)(63,128,72,118)(64,123,65,113), (1,103,53,20)(2,75,54,45)(3,97,55,22)(4,77,56,47)(5,99,49,24)(6,79,50,41)(7,101,51,18)(8,73,52,43)(9,84,107,33)(10,92,108,25)(11,86,109,35)(12,94,110,27)(13,88,111,37)(14,96,112,29)(15,82,105,39)(16,90,106,31)(17,114,100,124)(19,116,102,126)(21,118,104,128)(23,120,98,122)(26,63,93,72)(28,57,95,66)(30,59,89,68)(32,61,91,70)(34,62,85,71)(36,64,87,65)(38,58,81,67)(40,60,83,69)(42,115,80,125)(44,117,74,127)(46,119,76,121)(48,113,78,123)>;

G:=Group( (1,117)(2,118)(3,119)(4,120)(5,113)(6,114)(7,115)(8,116)(9,61)(10,62)(11,63)(12,64)(13,57)(14,58)(15,59)(16,60)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,121)(56,122)(65,110)(66,111)(67,112)(68,105)(69,106)(70,107)(71,108)(72,109)(73,102)(74,103)(75,104)(76,97)(77,98)(78,99)(79,100)(80,101)(81,96)(82,89)(83,90)(84,91)(85,92)(86,93)(87,94)(88,95), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,16,53,106)(2,11,54,109)(3,14,55,112)(4,9,56,107)(5,12,49,110)(6,15,50,105)(7,10,51,108)(8,13,52,111)(17,89,100,30)(18,92,101,25)(19,95,102,28)(20,90,103,31)(21,93,104,26)(22,96,97,29)(23,91,98,32)(24,94,99,27)(33,47,84,77)(34,42,85,80)(35,45,86,75)(36,48,87,78)(37,43,88,73)(38,46,81,76)(39,41,82,79)(40,44,83,74)(57,126,66,116)(58,121,67,119)(59,124,68,114)(60,127,69,117)(61,122,70,120)(62,125,71,115)(63,128,72,118)(64,123,65,113), (1,103,53,20)(2,75,54,45)(3,97,55,22)(4,77,56,47)(5,99,49,24)(6,79,50,41)(7,101,51,18)(8,73,52,43)(9,84,107,33)(10,92,108,25)(11,86,109,35)(12,94,110,27)(13,88,111,37)(14,96,112,29)(15,82,105,39)(16,90,106,31)(17,114,100,124)(19,116,102,126)(21,118,104,128)(23,120,98,122)(26,63,93,72)(28,57,95,66)(30,59,89,68)(32,61,91,70)(34,62,85,71)(36,64,87,65)(38,58,81,67)(40,60,83,69)(42,115,80,125)(44,117,74,127)(46,119,76,121)(48,113,78,123) );

G=PermutationGroup([[(1,117),(2,118),(3,119),(4,120),(5,113),(6,114),(7,115),(8,116),(9,61),(10,62),(11,63),(12,64),(13,57),(14,58),(15,59),(16,60),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(31,40),(32,33),(49,123),(50,124),(51,125),(52,126),(53,127),(54,128),(55,121),(56,122),(65,110),(66,111),(67,112),(68,105),(69,106),(70,107),(71,108),(72,109),(73,102),(74,103),(75,104),(76,97),(77,98),(78,99),(79,100),(80,101),(81,96),(82,89),(83,90),(84,91),(85,92),(86,93),(87,94),(88,95)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,16,53,106),(2,11,54,109),(3,14,55,112),(4,9,56,107),(5,12,49,110),(6,15,50,105),(7,10,51,108),(8,13,52,111),(17,89,100,30),(18,92,101,25),(19,95,102,28),(20,90,103,31),(21,93,104,26),(22,96,97,29),(23,91,98,32),(24,94,99,27),(33,47,84,77),(34,42,85,80),(35,45,86,75),(36,48,87,78),(37,43,88,73),(38,46,81,76),(39,41,82,79),(40,44,83,74),(57,126,66,116),(58,121,67,119),(59,124,68,114),(60,127,69,117),(61,122,70,120),(62,125,71,115),(63,128,72,118),(64,123,65,113)], [(1,103,53,20),(2,75,54,45),(3,97,55,22),(4,77,56,47),(5,99,49,24),(6,79,50,41),(7,101,51,18),(8,73,52,43),(9,84,107,33),(10,92,108,25),(11,86,109,35),(12,94,110,27),(13,88,111,37),(14,96,112,29),(15,82,105,39),(16,90,106,31),(17,114,100,124),(19,116,102,126),(21,118,104,128),(23,120,98,122),(26,63,93,72),(28,57,95,66),(30,59,89,68),(32,61,91,70),(34,62,85,71),(36,64,87,65),(38,58,81,67),(40,60,83,69),(42,115,80,125),(44,117,74,127),(46,119,76,121),(48,113,78,123)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E4F4G4H4I···4P8A···8H
order12···2444444444···48···8
size11···1222244448···84···4

32 irreducible representations

dim11111122222244
type+++++++--++-
imageC1C2C2C2C2C2D4Q8Q8D4SD16C4○D4C8⋊C22C8.C22
kernel(C2×C8)⋊Q8C22.7C42C22.4Q16C23.65C23C2×C4.Q8C2×C4⋊Q8C4⋊C4C4⋊C4C2×C8C22×C4C2×C4C2×C4C22C22
# reps11212142428211

Matrix representation of (C2×C8)⋊Q8 in GL6(𝔽17)

100000
010000
001000
000100
0000160
0000016
,
1070000
500000
0001300
0013000
0000104
0000137
,
400000
4130000
004000
0001300
0000410
0000713
,
1620000
1610000
000400
004000
0000137
0000104

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[10,5,0,0,0,0,7,0,0,0,0,0,0,0,0,13,0,0,0,0,13,0,0,0,0,0,0,0,10,13,0,0,0,0,4,7],[4,4,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,4,7,0,0,0,0,10,13],[16,16,0,0,0,0,2,1,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,13,10,0,0,0,0,7,4] >;

(C2×C8)⋊Q8 in GAP, Magma, Sage, TeX

(C_2\times C_8)\rtimes Q_8
% in TeX

G:=Group("(C2xC8):Q8");
// GroupNames label

G:=SmallGroup(128,790);
// by ID

G=gap.SmallGroup(128,790);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,56,141,64,422,387,394,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^4=1,d^2=c^2,d*b*d^-1=a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^3,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽