p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4⋊Q8⋊15C4, C4.87(C4×D4), C4⋊C4.317D4, (C2×Q8).70D4, C4.6(C4⋊D4), (C22×C4).64D4, C42⋊6C4.6C2, C42.148(C2×C4), C23.561(C2×D4), C2.5(D4.10D4), C22.100C22≀C2, (C2×C42).285C22, (C22×C4).684C23, C23.38D4.4C2, (C22×Q8).16C22, C42⋊C2.21C22, C2.25(C23.23D4), (C2×M4(2)).181C22, C23.32C23.3C2, C22.49(C22.D4), (C2×C4⋊Q8).8C2, (C2×Q8).67(C2×C4), (C2×C4).56(C4○D4), (C2×C4).1005(C2×D4), (C2×C4).13(C22⋊C4), (C2×C4).186(C22×C4), (C2×C4.10D4).8C2, C22.41(C2×C22⋊C4), SmallGroup(128,618)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4⋊Q8⋊15C4
G = < a,b,c,d | a4=b4=d4=1, c2=b2, dad-1=ab=ba, cac-1=a-1, cbc-1=dbd-1=b-1, dcd-1=b2c >
Subgroups: 292 in 162 conjugacy classes, 56 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C4.10D4, Q8⋊C4, C2×C42, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×Q8, C4⋊Q8, C4⋊Q8, C2×M4(2), C22×Q8, C42⋊6C4, C2×C4.10D4, C23.38D4, C23.32C23, C2×C4⋊Q8, C4⋊Q8⋊15C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C23.23D4, D4.10D4, C4⋊Q8⋊15C4
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 15 9 7)(2 16 10 8)(3 12 14 5)(4 11 13 6)(17 24 19 22)(18 21 20 23)(25 31 27 29)(26 32 28 30)
(1 5 9 12)(2 6 10 11)(3 15 14 7)(4 16 13 8)(17 25 19 27)(18 28 20 26)(21 32 23 30)(22 31 24 29)
(1 25 10 30)(2 32 9 27)(3 22 13 20)(4 18 14 24)(5 17 11 23)(6 21 12 19)(7 31 16 26)(8 28 15 29)
G:=sub<Sym(32)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,15,9,7)(2,16,10,8)(3,12,14,5)(4,11,13,6)(17,24,19,22)(18,21,20,23)(25,31,27,29)(26,32,28,30), (1,5,9,12)(2,6,10,11)(3,15,14,7)(4,16,13,8)(17,25,19,27)(18,28,20,26)(21,32,23,30)(22,31,24,29), (1,25,10,30)(2,32,9,27)(3,22,13,20)(4,18,14,24)(5,17,11,23)(6,21,12,19)(7,31,16,26)(8,28,15,29)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,15,9,7)(2,16,10,8)(3,12,14,5)(4,11,13,6)(17,24,19,22)(18,21,20,23)(25,31,27,29)(26,32,28,30), (1,5,9,12)(2,6,10,11)(3,15,14,7)(4,16,13,8)(17,25,19,27)(18,28,20,26)(21,32,23,30)(22,31,24,29), (1,25,10,30)(2,32,9,27)(3,22,13,20)(4,18,14,24)(5,17,11,23)(6,21,12,19)(7,31,16,26)(8,28,15,29) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,15,9,7),(2,16,10,8),(3,12,14,5),(4,11,13,6),(17,24,19,22),(18,21,20,23),(25,31,27,29),(26,32,28,30)], [(1,5,9,12),(2,6,10,11),(3,15,14,7),(4,16,13,8),(17,25,19,27),(18,28,20,26),(21,32,23,30),(22,31,24,29)], [(1,25,10,30),(2,32,9,27),(3,22,13,20),(4,18,14,24),(5,17,11,23),(6,21,12,19),(7,31,16,26),(8,28,15,29)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | ··· | 4T | 4U | 4V | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D4 | C4○D4 | D4.10D4 |
kernel | C4⋊Q8⋊15C4 | C42⋊6C4 | C2×C4.10D4 | C23.38D4 | C23.32C23 | C2×C4⋊Q8 | C4⋊Q8 | C4⋊C4 | C22×C4 | C2×Q8 | C2×C4 | C2 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 8 | 4 | 2 | 2 | 4 | 4 |
Matrix representation of C4⋊Q8⋊15C4 ►in GL6(𝔽17)
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 7 | 0 | 0 |
0 | 0 | 7 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 10 |
0 | 0 | 0 | 0 | 10 | 1 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,1,7,0,0,0,0,7,16,0,0,0,0,0,0,16,10,0,0,0,0,10,1],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C4⋊Q8⋊15C4 in GAP, Magma, Sage, TeX
C_4\rtimes Q_8\rtimes_{15}C_4
% in TeX
G:=Group("C4:Q8:15C4");
// GroupNames label
G:=SmallGroup(128,618);
// by ID
G=gap.SmallGroup(128,618);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,352,1018,521,248,2804,1411,2028,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=d^4=1,c^2=b^2,d*a*d^-1=a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^2*c>;
// generators/relations