p-group, metacyclic, nilpotent (class 2), monomial
Aliases: M6(2), C4.C16, C32⋊3C2, C8.3C8, C16.2C4, C22.C16, C16.8C22, (C2×C4).5C8, C4.13(C2×C8), (C2×C16).8C2, (C2×C8).13C4, C2.3(C2×C16), C8.23(C2×C4), 2-Sylow(AGammaL(1,289)), SmallGroup(64,51)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for M6(2)
G = < a,b | a32=b2=1, bab=a17 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(2 18)(4 20)(6 22)(8 24)(10 26)(12 28)(14 30)(16 32)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,18)(4,20)(6,22)(8,24)(10,26)(12,28)(14,30)(16,32)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,18)(4,20)(6,22)(8,24)(10,26)(12,28)(14,30)(16,32) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(2,18),(4,20),(6,22),(8,24),(10,26),(12,28),(14,30),(16,32)]])
M6(2) is a maximal subgroup of
C23.C16 D16⋊3C4 M6(2)⋊C2 C16.18D4 C8.C16 C8.Q16 C32⋊C22 Q64⋊C2
C8p.C8: C32⋊C4 C3⋊M6(2) C80.9C4 C5⋊M6(2) C7⋊M6(2) ...
D2p.C16: D4.C16 D4○C32 C96⋊C2 C32⋊D5 C80.C4 C32⋊D7 ...
M6(2) is a maximal quotient of
C80.C4
C8p.C8: C32⋊5C4 C3⋊M6(2) C80.9C4 C5⋊M6(2) C7⋊M6(2) ...
C16.D2p: C22⋊C32 C4⋊C32 C96⋊C2 C32⋊D5 C32⋊D7 ...
40 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 4C | 8A | 8B | 8C | 8D | 8E | 8F | 16A | ··· | 16H | 16I | 16J | 16K | 16L | 32A | ··· | 32P |
order | 1 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 16 | ··· | 16 | 16 | 16 | 16 | 16 | 32 | ··· | 32 |
size | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
type | + | + | + | |||||||
image | C1 | C2 | C2 | C4 | C4 | C8 | C8 | C16 | C16 | M6(2) |
kernel | M6(2) | C32 | C2×C16 | C16 | C2×C8 | C8 | C2×C4 | C4 | C22 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 8 | 8 | 8 |
Matrix representation of M6(2) ►in GL2(𝔽17) generated by
0 | 11 |
1 | 0 |
16 | 0 |
0 | 1 |
G:=sub<GL(2,GF(17))| [0,1,11,0],[16,0,0,1] >;
M6(2) in GAP, Magma, Sage, TeX
M_6(2)
% in TeX
G:=Group("M6(2)");
// GroupNames label
G:=SmallGroup(64,51);
// by ID
G=gap.SmallGroup(64,51);
# by ID
G:=PCGroup([6,-2,2,-2,-2,-2,-2,24,409,50,69,88]);
// Polycyclic
G:=Group<a,b|a^32=b^2=1,b*a*b=a^17>;
// generators/relations
Export