metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C11⋊C8, C22.C4, C44.2C2, C4.2D11, C2.Dic11, SmallGroup(88,1)
Series: Derived ►Chief ►Lower central ►Upper central
C11 — C11⋊C8 |
Generators and relations for C11⋊C8
G = < a,b | a11=b8=1, bab-1=a-1 >
Character table of C11⋊C8
class | 1 | 2 | 4A | 4B | 8A | 8B | 8C | 8D | 11A | 11B | 11C | 11D | 11E | 22A | 22B | 22C | 22D | 22E | 44A | 44B | 44C | 44D | 44E | 44F | 44G | 44H | 44I | 44J | |
size | 1 | 1 | 1 | 1 | 11 | 11 | 11 | 11 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | -i | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ4 | 1 | 1 | -1 | -1 | i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ5 | 1 | -1 | -i | i | ζ85 | ζ87 | ζ8 | ζ83 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -i | i | i | i | i | i | -i | -i | -i | -i | linear of order 8 |
ρ6 | 1 | -1 | i | -i | ζ83 | ζ8 | ζ87 | ζ85 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | i | -i | -i | -i | -i | -i | i | i | i | i | linear of order 8 |
ρ7 | 1 | -1 | -i | i | ζ8 | ζ83 | ζ85 | ζ87 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -i | i | i | i | i | i | -i | -i | -i | -i | linear of order 8 |
ρ8 | 1 | -1 | i | -i | ζ87 | ζ85 | ζ83 | ζ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | i | -i | -i | -i | -i | -i | i | i | i | i | linear of order 8 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | ζ119+ζ112 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | orthogonal lifted from D11 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | ζ118+ζ113 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | orthogonal lifted from D11 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | ζ1110+ζ11 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | orthogonal lifted from D11 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | ζ117+ζ114 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | orthogonal lifted from D11 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | ζ116+ζ115 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | orthogonal lifted from D11 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | -ζ118-ζ113 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ117-ζ114 | symplectic lifted from Dic11, Schur index 2 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | -ζ119-ζ112 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ1110-ζ11 | symplectic lifted from Dic11, Schur index 2 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | -ζ116-ζ115 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ118-ζ113 | symplectic lifted from Dic11, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | -ζ117-ζ114 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ119-ζ112 | symplectic lifted from Dic11, Schur index 2 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | -ζ1110-ζ11 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ116-ζ115 | symplectic lifted from Dic11, Schur index 2 |
ρ19 | 2 | -2 | 2i | -2i | 0 | 0 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | -ζ116-ζ115 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ118-ζ113 | ζ4ζ118+ζ4ζ113 | ζ43ζ118+ζ43ζ113 | ζ43ζ116+ζ43ζ115 | ζ43ζ119+ζ43ζ112 | ζ43ζ1110+ζ43ζ11 | ζ43ζ117+ζ43ζ114 | ζ4ζ116+ζ4ζ115 | ζ4ζ119+ζ4ζ112 | ζ4ζ1110+ζ4ζ11 | ζ4ζ117+ζ4ζ114 | complex faithful |
ρ20 | 2 | -2 | 2i | -2i | 0 | 0 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | -ζ118-ζ113 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ117-ζ114 | ζ4ζ117+ζ4ζ114 | ζ43ζ117+ζ43ζ114 | ζ43ζ118+ζ43ζ113 | ζ43ζ1110+ζ43ζ11 | ζ43ζ116+ζ43ζ115 | ζ43ζ119+ζ43ζ112 | ζ4ζ118+ζ4ζ113 | ζ4ζ1110+ζ4ζ11 | ζ4ζ116+ζ4ζ115 | ζ4ζ119+ζ4ζ112 | complex faithful |
ρ21 | 2 | -2 | -2i | 2i | 0 | 0 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | -ζ119-ζ112 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ1110-ζ11 | ζ43ζ1110+ζ43ζ11 | ζ4ζ1110+ζ4ζ11 | ζ4ζ119+ζ4ζ112 | ζ4ζ118+ζ4ζ113 | ζ4ζ117+ζ4ζ114 | ζ4ζ116+ζ4ζ115 | ζ43ζ119+ζ43ζ112 | ζ43ζ118+ζ43ζ113 | ζ43ζ117+ζ43ζ114 | ζ43ζ116+ζ43ζ115 | complex faithful |
ρ22 | 2 | -2 | 2i | -2i | 0 | 0 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | -ζ1110-ζ11 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ116-ζ115 | ζ4ζ116+ζ4ζ115 | ζ43ζ116+ζ43ζ115 | ζ43ζ1110+ζ43ζ11 | ζ43ζ117+ζ43ζ114 | ζ43ζ119+ζ43ζ112 | ζ43ζ118+ζ43ζ113 | ζ4ζ1110+ζ4ζ11 | ζ4ζ117+ζ4ζ114 | ζ4ζ119+ζ4ζ112 | ζ4ζ118+ζ4ζ113 | complex faithful |
ρ23 | 2 | -2 | -2i | 2i | 0 | 0 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | -ζ118-ζ113 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ117-ζ114 | ζ43ζ117+ζ43ζ114 | ζ4ζ117+ζ4ζ114 | ζ4ζ118+ζ4ζ113 | ζ4ζ1110+ζ4ζ11 | ζ4ζ116+ζ4ζ115 | ζ4ζ119+ζ4ζ112 | ζ43ζ118+ζ43ζ113 | ζ43ζ1110+ζ43ζ11 | ζ43ζ116+ζ43ζ115 | ζ43ζ119+ζ43ζ112 | complex faithful |
ρ24 | 2 | -2 | -2i | 2i | 0 | 0 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | -ζ117-ζ114 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ119-ζ112 | ζ43ζ119+ζ43ζ112 | ζ4ζ119+ζ4ζ112 | ζ4ζ117+ζ4ζ114 | ζ4ζ116+ζ4ζ115 | ζ4ζ118+ζ4ζ113 | ζ4ζ1110+ζ4ζ11 | ζ43ζ117+ζ43ζ114 | ζ43ζ116+ζ43ζ115 | ζ43ζ118+ζ43ζ113 | ζ43ζ1110+ζ43ζ11 | complex faithful |
ρ25 | 2 | -2 | -2i | 2i | 0 | 0 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | -ζ1110-ζ11 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ116-ζ115 | ζ43ζ116+ζ43ζ115 | ζ4ζ116+ζ4ζ115 | ζ4ζ1110+ζ4ζ11 | ζ4ζ117+ζ4ζ114 | ζ4ζ119+ζ4ζ112 | ζ4ζ118+ζ4ζ113 | ζ43ζ1110+ζ43ζ11 | ζ43ζ117+ζ43ζ114 | ζ43ζ119+ζ43ζ112 | ζ43ζ118+ζ43ζ113 | complex faithful |
ρ26 | 2 | -2 | 2i | -2i | 0 | 0 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | -ζ117-ζ114 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ119-ζ112 | ζ4ζ119+ζ4ζ112 | ζ43ζ119+ζ43ζ112 | ζ43ζ117+ζ43ζ114 | ζ43ζ116+ζ43ζ115 | ζ43ζ118+ζ43ζ113 | ζ43ζ1110+ζ43ζ11 | ζ4ζ117+ζ4ζ114 | ζ4ζ116+ζ4ζ115 | ζ4ζ118+ζ4ζ113 | ζ4ζ1110+ζ4ζ11 | complex faithful |
ρ27 | 2 | -2 | 2i | -2i | 0 | 0 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | -ζ119-ζ112 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ1110-ζ11 | ζ4ζ1110+ζ4ζ11 | ζ43ζ1110+ζ43ζ11 | ζ43ζ119+ζ43ζ112 | ζ43ζ118+ζ43ζ113 | ζ43ζ117+ζ43ζ114 | ζ43ζ116+ζ43ζ115 | ζ4ζ119+ζ4ζ112 | ζ4ζ118+ζ4ζ113 | ζ4ζ117+ζ4ζ114 | ζ4ζ116+ζ4ζ115 | complex faithful |
ρ28 | 2 | -2 | -2i | 2i | 0 | 0 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | -ζ116-ζ115 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ118-ζ113 | ζ43ζ118+ζ43ζ113 | ζ4ζ118+ζ4ζ113 | ζ4ζ116+ζ4ζ115 | ζ4ζ119+ζ4ζ112 | ζ4ζ1110+ζ4ζ11 | ζ4ζ117+ζ4ζ114 | ζ43ζ116+ζ43ζ115 | ζ43ζ119+ζ43ζ112 | ζ43ζ1110+ζ43ζ11 | ζ43ζ117+ζ43ζ114 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(1 78 43 56 21 67 32 45)(2 88 44 66 22 77 33 55)(3 87 34 65 12 76 23 54)(4 86 35 64 13 75 24 53)(5 85 36 63 14 74 25 52)(6 84 37 62 15 73 26 51)(7 83 38 61 16 72 27 50)(8 82 39 60 17 71 28 49)(9 81 40 59 18 70 29 48)(10 80 41 58 19 69 30 47)(11 79 42 57 20 68 31 46)
G:=sub<Sym(88)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,78,43,56,21,67,32,45)(2,88,44,66,22,77,33,55)(3,87,34,65,12,76,23,54)(4,86,35,64,13,75,24,53)(5,85,36,63,14,74,25,52)(6,84,37,62,15,73,26,51)(7,83,38,61,16,72,27,50)(8,82,39,60,17,71,28,49)(9,81,40,59,18,70,29,48)(10,80,41,58,19,69,30,47)(11,79,42,57,20,68,31,46)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,78,43,56,21,67,32,45)(2,88,44,66,22,77,33,55)(3,87,34,65,12,76,23,54)(4,86,35,64,13,75,24,53)(5,85,36,63,14,74,25,52)(6,84,37,62,15,73,26,51)(7,83,38,61,16,72,27,50)(8,82,39,60,17,71,28,49)(9,81,40,59,18,70,29,48)(10,80,41,58,19,69,30,47)(11,79,42,57,20,68,31,46) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(1,78,43,56,21,67,32,45),(2,88,44,66,22,77,33,55),(3,87,34,65,12,76,23,54),(4,86,35,64,13,75,24,53),(5,85,36,63,14,74,25,52),(6,84,37,62,15,73,26,51),(7,83,38,61,16,72,27,50),(8,82,39,60,17,71,28,49),(9,81,40,59,18,70,29,48),(10,80,41,58,19,69,30,47),(11,79,42,57,20,68,31,46)]])
C11⋊C8 is a maximal subgroup of
C8×D11 C88⋊C2 C44.C4 D4⋊D11 D4.D11 Q8⋊D11 C11⋊Q16 C33⋊C8 C11⋊C40 C55⋊3C8 C55⋊C8
C11⋊C8 is a maximal quotient of
C11⋊C16 C33⋊C8 C55⋊3C8 C55⋊C8
Matrix representation of C11⋊C8 ►in GL2(𝔽89) generated by
88 | 1 |
1 | 87 |
19 | 13 |
57 | 70 |
G:=sub<GL(2,GF(89))| [88,1,1,87],[19,57,13,70] >;
C11⋊C8 in GAP, Magma, Sage, TeX
C_{11}\rtimes C_8
% in TeX
G:=Group("C11:C8");
// GroupNames label
G:=SmallGroup(88,1);
// by ID
G=gap.SmallGroup(88,1);
# by ID
G:=PCGroup([4,-2,-2,-2,-11,8,21,1283]);
// Polycyclic
G:=Group<a,b|a^11=b^8=1,b*a*b^-1=a^-1>;
// generators/relations
Export
Subgroup lattice of C11⋊C8 in TeX
Character table of C11⋊C8 in TeX