Copied to
clipboard

G = C11⋊C16order 176 = 24·11

The semidirect product of C11 and C16 acting via C16/C8=C2

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C11⋊C16, C22.C8, C44.2C4, C88.2C2, C8.2D11, C4.2Dic11, C2.(C11⋊C8), SmallGroup(176,1)

Series: Derived Chief Lower central Upper central

C1C11 — C11⋊C16
C1C11C22C44C88 — C11⋊C16
C11 — C11⋊C16
C1C8

Generators and relations for C11⋊C16
 G = < a,b | a11=b16=1, bab-1=a-1 >

11C16

Smallest permutation representation of C11⋊C16
Regular action on 176 points
Generators in S176
(1 81 151 98 46 138 61 24 115 174 76)(2 77 175 116 25 62 139 47 99 152 82)(3 83 153 100 48 140 63 26 117 176 78)(4 79 161 118 27 64 141 33 101 154 84)(5 85 155 102 34 142 49 28 119 162 80)(6 65 163 120 29 50 143 35 103 156 86)(7 87 157 104 36 144 51 30 121 164 66)(8 67 165 122 31 52 129 37 105 158 88)(9 89 159 106 38 130 53 32 123 166 68)(10 69 167 124 17 54 131 39 107 160 90)(11 91 145 108 40 132 55 18 125 168 70)(12 71 169 126 19 56 133 41 109 146 92)(13 93 147 110 42 134 57 20 127 170 72)(14 73 171 128 21 58 135 43 111 148 94)(15 95 149 112 44 136 59 22 113 172 74)(16 75 173 114 23 60 137 45 97 150 96)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)

G:=sub<Sym(176)| (1,81,151,98,46,138,61,24,115,174,76)(2,77,175,116,25,62,139,47,99,152,82)(3,83,153,100,48,140,63,26,117,176,78)(4,79,161,118,27,64,141,33,101,154,84)(5,85,155,102,34,142,49,28,119,162,80)(6,65,163,120,29,50,143,35,103,156,86)(7,87,157,104,36,144,51,30,121,164,66)(8,67,165,122,31,52,129,37,105,158,88)(9,89,159,106,38,130,53,32,123,166,68)(10,69,167,124,17,54,131,39,107,160,90)(11,91,145,108,40,132,55,18,125,168,70)(12,71,169,126,19,56,133,41,109,146,92)(13,93,147,110,42,134,57,20,127,170,72)(14,73,171,128,21,58,135,43,111,148,94)(15,95,149,112,44,136,59,22,113,172,74)(16,75,173,114,23,60,137,45,97,150,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)>;

G:=Group( (1,81,151,98,46,138,61,24,115,174,76)(2,77,175,116,25,62,139,47,99,152,82)(3,83,153,100,48,140,63,26,117,176,78)(4,79,161,118,27,64,141,33,101,154,84)(5,85,155,102,34,142,49,28,119,162,80)(6,65,163,120,29,50,143,35,103,156,86)(7,87,157,104,36,144,51,30,121,164,66)(8,67,165,122,31,52,129,37,105,158,88)(9,89,159,106,38,130,53,32,123,166,68)(10,69,167,124,17,54,131,39,107,160,90)(11,91,145,108,40,132,55,18,125,168,70)(12,71,169,126,19,56,133,41,109,146,92)(13,93,147,110,42,134,57,20,127,170,72)(14,73,171,128,21,58,135,43,111,148,94)(15,95,149,112,44,136,59,22,113,172,74)(16,75,173,114,23,60,137,45,97,150,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176) );

G=PermutationGroup([[(1,81,151,98,46,138,61,24,115,174,76),(2,77,175,116,25,62,139,47,99,152,82),(3,83,153,100,48,140,63,26,117,176,78),(4,79,161,118,27,64,141,33,101,154,84),(5,85,155,102,34,142,49,28,119,162,80),(6,65,163,120,29,50,143,35,103,156,86),(7,87,157,104,36,144,51,30,121,164,66),(8,67,165,122,31,52,129,37,105,158,88),(9,89,159,106,38,130,53,32,123,166,68),(10,69,167,124,17,54,131,39,107,160,90),(11,91,145,108,40,132,55,18,125,168,70),(12,71,169,126,19,56,133,41,109,146,92),(13,93,147,110,42,134,57,20,127,170,72),(14,73,171,128,21,58,135,43,111,148,94),(15,95,149,112,44,136,59,22,113,172,74),(16,75,173,114,23,60,137,45,97,150,96)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)]])

C11⋊C16 is a maximal subgroup of   C16×D11  D22.C8  C44.C8  C11⋊D16  D8.D11  C8.6D22  C11⋊Q32
C11⋊C16 is a maximal quotient of   C11⋊C32

56 conjugacy classes

class 1  2 4A4B8A8B8C8D11A···11E16A···16H22A···22E44A···44J88A···88T
order1244888811···1116···1622···2244···4488···88
size111111112···211···112···22···22···2

56 irreducible representations

dim111112222
type+++-
imageC1C2C4C8C16D11Dic11C11⋊C8C11⋊C16
kernelC11⋊C16C88C44C22C11C8C4C2C1
# reps11248551020

Matrix representation of C11⋊C16 in GL3(𝔽353) generated by

100
001
035295
,
29300
016339
094337
G:=sub<GL(3,GF(353))| [1,0,0,0,0,352,0,1,95],[293,0,0,0,16,94,0,339,337] >;

C11⋊C16 in GAP, Magma, Sage, TeX

C_{11}\rtimes C_{16}
% in TeX

G:=Group("C11:C16");
// GroupNames label

G:=SmallGroup(176,1);
// by ID

G=gap.SmallGroup(176,1);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-11,10,26,42,4004]);
// Polycyclic

G:=Group<a,b|a^11=b^16=1,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C11⋊C16 in TeX

׿
×
𝔽