Copied to
clipboard

G = Q8xA4order 96 = 25·3

Direct product of Q8 and A4

direct product, metabelian, soluble, monomial

Aliases: Q8xA4, C22:(C3xQ8), C4.1(C2xA4), (C22xC4).C6, (C4xA4).3C2, (C22xQ8):2C3, C23.7(C2xC6), C2.4(C22xA4), (C2xA4).8C22, SmallGroup(96,199)

Series: Derived Chief Lower central Upper central

C1C23 — Q8xA4
C1C22C23C2xA4C4xA4 — Q8xA4
C22C23 — Q8xA4
C1C2Q8

Generators and relations for Q8xA4
 G = < a,b,c,d,e | a4=c2=d2=e3=1, b2=a2, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

Subgroups: 108 in 46 conjugacy classes, 18 normal (9 characteristic)
Quotients: C1, C2, C3, C22, C6, Q8, A4, C2xC6, C3xQ8, C2xA4, C22xA4, Q8xA4
3C2
3C2
4C3
3C22
3C4
3C22
3C4
3C4
4C6
3C2xC4
3C2xC4
3Q8
3Q8
3Q8
3C2xC4
3C2xC4
3C2xC4
3C2xC4
3Q8
3Q8
4C12
4C12
4C12
3C2xQ8
3C2xQ8
3C2xQ8
3C2xQ8
4C3xQ8

Character table of Q8xA4

 class 12A2B2C3A3B4A4B4C4D4E4F6A6B12A12B12C12D12E12F
 size 11334422266644888888
ρ111111111111111111111    trivial
ρ21111111-1-1-11-111-1-111-1-1    linear of order 2
ρ3111111-1-111-1-1111-1-1-11-1    linear of order 2
ρ4111111-11-1-1-1111-11-1-1-11    linear of order 2
ρ51111ζ3ζ32-11-1-1-11ζ3ζ32ζ6ζ32ζ65ζ6ζ65ζ3    linear of order 6
ρ61111ζ3ζ32111111ζ3ζ32ζ32ζ32ζ3ζ32ζ3ζ3    linear of order 3
ρ71111ζ32ζ31-1-1-11-1ζ32ζ3ζ65ζ65ζ32ζ3ζ6ζ6    linear of order 6
ρ81111ζ32ζ3111111ζ32ζ3ζ3ζ3ζ32ζ3ζ32ζ32    linear of order 3
ρ91111ζ3ζ321-1-1-11-1ζ3ζ32ζ6ζ6ζ3ζ32ζ65ζ65    linear of order 6
ρ101111ζ32ζ3-1-111-1-1ζ32ζ3ζ3ζ65ζ6ζ65ζ32ζ6    linear of order 6
ρ111111ζ3ζ32-1-111-1-1ζ3ζ32ζ32ζ6ζ65ζ6ζ3ζ65    linear of order 6
ρ121111ζ32ζ3-11-1-1-11ζ32ζ3ζ65ζ3ζ6ζ65ζ6ζ32    linear of order 6
ρ132-22-222000000-2-2000000    symplectic lifted from Q8, Schur index 2
ρ142-22-2-1+-3-1--30000001--31+-3000000    complex lifted from C3xQ8
ρ152-22-2-1--3-1+-30000001+-31--3000000    complex lifted from C3xQ8
ρ1633-1-100-33-311-100000000    orthogonal lifted from C2xA4
ρ1733-1-100333-1-1-100000000    orthogonal lifted from A4
ρ1833-1-100-3-33-11100000000    orthogonal lifted from C2xA4
ρ1933-1-1003-3-31-1100000000    orthogonal lifted from C2xA4
ρ206-6-220000000000000000    symplectic faithful, Schur index 2

Permutation representations of Q8xA4
On 24 points - transitive group 24T86
Generators in S24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 23 3 21)(2 22 4 24)(5 16 7 14)(6 15 8 13)(9 17 11 19)(10 20 12 18)
(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)
(1 3)(2 4)(9 11)(10 12)(17 19)(18 20)(21 23)(22 24)
(1 16 9)(2 13 10)(3 14 11)(4 15 12)(5 19 21)(6 20 22)(7 17 23)(8 18 24)

G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,23,3,21)(2,22,4,24)(5,16,7,14)(6,15,8,13)(9,17,11,19)(10,20,12,18), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,3)(2,4)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24), (1,16,9)(2,13,10)(3,14,11)(4,15,12)(5,19,21)(6,20,22)(7,17,23)(8,18,24)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,23,3,21)(2,22,4,24)(5,16,7,14)(6,15,8,13)(9,17,11,19)(10,20,12,18), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,3)(2,4)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24), (1,16,9)(2,13,10)(3,14,11)(4,15,12)(5,19,21)(6,20,22)(7,17,23)(8,18,24) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,23,3,21),(2,22,4,24),(5,16,7,14),(6,15,8,13),(9,17,11,19),(10,20,12,18)], [(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20)], [(1,3),(2,4),(9,11),(10,12),(17,19),(18,20),(21,23),(22,24)], [(1,16,9),(2,13,10),(3,14,11),(4,15,12),(5,19,21),(6,20,22),(7,17,23),(8,18,24)]])

G:=TransitiveGroup(24,86);

Q8xA4 is a maximal subgroup of   A4:2Q16  Q8:3S4  Q8:4S4
Q8xA4 is a maximal quotient of   SL2(F3):3Q8

Matrix representation of Q8xA4 in GL5(F13)

1212000
21000
001200
000120
000012
,
80000
105000
001200
000120
000012
,
10000
01000
001200
001201
001210
,
10000
01000
000121
000120
001120
,
90000
09000
00009
00900
00090

G:=sub<GL(5,GF(13))| [12,2,0,0,0,12,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[8,10,0,0,0,0,5,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,12,12,12,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,12,12,12,0,0,1,0,0],[9,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,9,0,0,9,0,0] >;

Q8xA4 in GAP, Magma, Sage, TeX

Q_8\times A_4
% in TeX

G:=Group("Q8xA4");
// GroupNames label

G:=SmallGroup(96,199);
// by ID

G=gap.SmallGroup(96,199);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,2,72,169,79,376,665]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^2=d^2=e^3=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of Q8xA4 in TeX
Character table of Q8xA4 in TeX

׿
x
:
Z
F
o
wr
Q
<