# Extensions 1→N→G→Q→1 with N=C2×Q8 and Q=S3

Direct product G=N×Q with N=C2×Q8 and Q=S3
dρLabelID
C2×S3×Q848C2xS3xQ896,212

Semidirect products G=N:Q with N=C2×Q8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×Q8)⋊1S3 = C2×GL2(𝔽3)φ: S3/C1S3 ⊆ Out C2×Q816(C2xQ8):1S396,189
(C2×Q8)⋊2S3 = Q8.D6φ: S3/C1S3 ⊆ Out C2×Q8164-(C2xQ8):2S396,190
(C2×Q8)⋊3S3 = C2×Q82S3φ: S3/C3C2 ⊆ Out C2×Q848(C2xQ8):3S396,148
(C2×Q8)⋊4S3 = Q8.11D6φ: S3/C3C2 ⊆ Out C2×Q8484(C2xQ8):4S396,149
(C2×Q8)⋊5S3 = D63Q8φ: S3/C3C2 ⊆ Out C2×Q848(C2xQ8):5S396,153
(C2×Q8)⋊6S3 = C12.23D4φ: S3/C3C2 ⊆ Out C2×Q848(C2xQ8):6S396,154
(C2×Q8)⋊7S3 = Q8.15D6φ: S3/C3C2 ⊆ Out C2×Q8484(C2xQ8):7S396,214
(C2×Q8)⋊8S3 = C2×Q83S3φ: trivial image48(C2xQ8):8S396,213

Non-split extensions G=N.Q with N=C2×Q8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×Q8).1S3 = Q8⋊Dic3φ: S3/C1S3 ⊆ Out C2×Q832(C2xQ8).1S396,66
(C2×Q8).2S3 = C2×CSU2(𝔽3)φ: S3/C1S3 ⊆ Out C2×Q832(C2xQ8).2S396,188
(C2×Q8).3S3 = Q82Dic3φ: S3/C3C2 ⊆ Out C2×Q896(C2xQ8).3S396,42
(C2×Q8).4S3 = C12.10D4φ: S3/C3C2 ⊆ Out C2×Q8484(C2xQ8).4S396,43
(C2×Q8).5S3 = C2×C3⋊Q16φ: S3/C3C2 ⊆ Out C2×Q896(C2xQ8).5S396,150
(C2×Q8).6S3 = Dic3⋊Q8φ: S3/C3C2 ⊆ Out C2×Q896(C2xQ8).6S396,151
(C2×Q8).7S3 = Q8×Dic3φ: trivial image96(C2xQ8).7S396,152

׿
×
𝔽