metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C12.9D4, C6.5Q16, Q8⋊2Dic3, C6.8SD16, (C3×Q8)⋊1C4, C12.8(C2×C4), (C2×C4).40D6, (C2×C6).34D4, (C6×Q8).1C2, (C2×Q8).3S3, C3⋊3(Q8⋊C4), C4.2(C2×Dic3), C4.14(C3⋊D4), C4⋊Dic3.10C2, C2.3(C3⋊Q16), C6.16(C22⋊C4), (C2×C12).18C22, C2.3(Q8⋊2S3), C2.6(C6.D4), C22.18(C3⋊D4), (C2×C3⋊C8).5C2, SmallGroup(96,42)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8⋊2Dic3
G = < a,b,c,d | a4=c6=1, b2=a2, d2=c3, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=c-1 >
Character table of Q8⋊2Dic3
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 12 | 12 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | i | -i | -1 | -1 | 1 | -i | i | -i | i | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | i | -1 | -1 | 1 | i | -i | i | -i | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | i | -1 | -1 | 1 | -i | i | -i | i | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | i | -i | -1 | -1 | 1 | i | -i | i | -i | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | 2 | -2 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | -1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | -2 | 2 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -1 | -1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ15 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | -√-3 | √-3 | 1 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | -2 | -2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | √-3 | -√-3 | 1 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ19 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -√-3 | √-3 | 1 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ20 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ21 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ22 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | √-3 | -√-3 | 1 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ23 | 4 | -4 | 4 | -4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
ρ24 | 4 | -4 | -4 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C3⋊Q16, Schur index 2 |
(1 28 23 10)(2 29 24 11)(3 30 19 12)(4 25 20 7)(5 26 21 8)(6 27 22 9)(13 94 85 80)(14 95 86 81)(15 96 87 82)(16 91 88 83)(17 92 89 84)(18 93 90 79)(31 41 44 54)(32 42 45 49)(33 37 46 50)(34 38 47 51)(35 39 48 52)(36 40 43 53)(55 66 69 73)(56 61 70 74)(57 62 71 75)(58 63 72 76)(59 64 67 77)(60 65 68 78)
(1 44 23 31)(2 45 24 32)(3 46 19 33)(4 47 20 34)(5 48 21 35)(6 43 22 36)(7 51 25 38)(8 52 26 39)(9 53 27 40)(10 54 28 41)(11 49 29 42)(12 50 30 37)(13 67 85 59)(14 68 86 60)(15 69 87 55)(16 70 88 56)(17 71 89 57)(18 72 90 58)(61 83 74 91)(62 84 75 92)(63 79 76 93)(64 80 77 94)(65 81 78 95)(66 82 73 96)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 56 4 59)(2 55 5 58)(3 60 6 57)(7 64 10 61)(8 63 11 66)(9 62 12 65)(13 54 16 51)(14 53 17 50)(15 52 18 49)(19 68 22 71)(20 67 23 70)(21 72 24 69)(25 77 28 74)(26 76 29 73)(27 75 30 78)(31 83 34 80)(32 82 35 79)(33 81 36 84)(37 86 40 89)(38 85 41 88)(39 90 42 87)(43 92 46 95)(44 91 47 94)(45 96 48 93)
G:=sub<Sym(96)| (1,28,23,10)(2,29,24,11)(3,30,19,12)(4,25,20,7)(5,26,21,8)(6,27,22,9)(13,94,85,80)(14,95,86,81)(15,96,87,82)(16,91,88,83)(17,92,89,84)(18,93,90,79)(31,41,44,54)(32,42,45,49)(33,37,46,50)(34,38,47,51)(35,39,48,52)(36,40,43,53)(55,66,69,73)(56,61,70,74)(57,62,71,75)(58,63,72,76)(59,64,67,77)(60,65,68,78), (1,44,23,31)(2,45,24,32)(3,46,19,33)(4,47,20,34)(5,48,21,35)(6,43,22,36)(7,51,25,38)(8,52,26,39)(9,53,27,40)(10,54,28,41)(11,49,29,42)(12,50,30,37)(13,67,85,59)(14,68,86,60)(15,69,87,55)(16,70,88,56)(17,71,89,57)(18,72,90,58)(61,83,74,91)(62,84,75,92)(63,79,76,93)(64,80,77,94)(65,81,78,95)(66,82,73,96), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,56,4,59)(2,55,5,58)(3,60,6,57)(7,64,10,61)(8,63,11,66)(9,62,12,65)(13,54,16,51)(14,53,17,50)(15,52,18,49)(19,68,22,71)(20,67,23,70)(21,72,24,69)(25,77,28,74)(26,76,29,73)(27,75,30,78)(31,83,34,80)(32,82,35,79)(33,81,36,84)(37,86,40,89)(38,85,41,88)(39,90,42,87)(43,92,46,95)(44,91,47,94)(45,96,48,93)>;
G:=Group( (1,28,23,10)(2,29,24,11)(3,30,19,12)(4,25,20,7)(5,26,21,8)(6,27,22,9)(13,94,85,80)(14,95,86,81)(15,96,87,82)(16,91,88,83)(17,92,89,84)(18,93,90,79)(31,41,44,54)(32,42,45,49)(33,37,46,50)(34,38,47,51)(35,39,48,52)(36,40,43,53)(55,66,69,73)(56,61,70,74)(57,62,71,75)(58,63,72,76)(59,64,67,77)(60,65,68,78), (1,44,23,31)(2,45,24,32)(3,46,19,33)(4,47,20,34)(5,48,21,35)(6,43,22,36)(7,51,25,38)(8,52,26,39)(9,53,27,40)(10,54,28,41)(11,49,29,42)(12,50,30,37)(13,67,85,59)(14,68,86,60)(15,69,87,55)(16,70,88,56)(17,71,89,57)(18,72,90,58)(61,83,74,91)(62,84,75,92)(63,79,76,93)(64,80,77,94)(65,81,78,95)(66,82,73,96), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,56,4,59)(2,55,5,58)(3,60,6,57)(7,64,10,61)(8,63,11,66)(9,62,12,65)(13,54,16,51)(14,53,17,50)(15,52,18,49)(19,68,22,71)(20,67,23,70)(21,72,24,69)(25,77,28,74)(26,76,29,73)(27,75,30,78)(31,83,34,80)(32,82,35,79)(33,81,36,84)(37,86,40,89)(38,85,41,88)(39,90,42,87)(43,92,46,95)(44,91,47,94)(45,96,48,93) );
G=PermutationGroup([[(1,28,23,10),(2,29,24,11),(3,30,19,12),(4,25,20,7),(5,26,21,8),(6,27,22,9),(13,94,85,80),(14,95,86,81),(15,96,87,82),(16,91,88,83),(17,92,89,84),(18,93,90,79),(31,41,44,54),(32,42,45,49),(33,37,46,50),(34,38,47,51),(35,39,48,52),(36,40,43,53),(55,66,69,73),(56,61,70,74),(57,62,71,75),(58,63,72,76),(59,64,67,77),(60,65,68,78)], [(1,44,23,31),(2,45,24,32),(3,46,19,33),(4,47,20,34),(5,48,21,35),(6,43,22,36),(7,51,25,38),(8,52,26,39),(9,53,27,40),(10,54,28,41),(11,49,29,42),(12,50,30,37),(13,67,85,59),(14,68,86,60),(15,69,87,55),(16,70,88,56),(17,71,89,57),(18,72,90,58),(61,83,74,91),(62,84,75,92),(63,79,76,93),(64,80,77,94),(65,81,78,95),(66,82,73,96)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,56,4,59),(2,55,5,58),(3,60,6,57),(7,64,10,61),(8,63,11,66),(9,62,12,65),(13,54,16,51),(14,53,17,50),(15,52,18,49),(19,68,22,71),(20,67,23,70),(21,72,24,69),(25,77,28,74),(26,76,29,73),(27,75,30,78),(31,83,34,80),(32,82,35,79),(33,81,36,84),(37,86,40,89),(38,85,41,88),(39,90,42,87),(43,92,46,95),(44,91,47,94),(45,96,48,93)]])
Q8⋊2Dic3 is a maximal subgroup of
Q8⋊2Dic6 Dic3.1Q16 Q8⋊3Dic6 (C2×C8).D6 Q8.3Dic6 (C2×Q8).36D6 Q8.4Dic6 Q8⋊C4⋊S3 S3×Q8⋊C4 (S3×Q8)⋊C4 Q8⋊7(C4×S3) C4⋊C4.150D6 D6.1SD16 D6.Q16 D6⋊C8.C2 C8⋊Dic3⋊C2 Q8⋊4Dic6 Q8⋊5Dic6 Q8.5Dic6 C4×Q8⋊2S3 C42.56D6 C4×C3⋊Q16 C42.59D6 (C2×Q8).49D6 (C2×C6).Q16 (C2×Q8).51D6 C3⋊C8⋊24D4 C3⋊C8⋊6D4 C3⋊C8.29D4 C3⋊C8.6D4 C42.61D6 C42.62D6 C42.213D6 D12.23D4 C12.9Q16 C42.77D6 C12⋊5SD16 C12⋊Q16 Dic3×SD16 Dic3⋊3SD16 SD16⋊Dic3 (C3×D4).D4 D6⋊8SD16 C24⋊14D4 D12⋊7D4 C24⋊8D4 Dic3×Q16 Dic3⋊3Q16 Q16⋊Dic3 (C2×Q16)⋊S3 D6⋊5Q16 D12.17D4 D6⋊3Q16 C24.36D4 (C6×Q8)⋊6C4 (C3×Q8)⋊13D4 (C2×C6)⋊8Q16 C4○D4⋊3Dic3 C4○D4⋊4Dic3 (C3×D4)⋊14D4 (C3×D4).32D4 Q8⋊2Dic9 Q8⋊Dic9 Dic6⋊Dic3 C6.Dic12 C62.117D4 C6.GL2(𝔽3) C30.Q16 C6.Dic20 Q8⋊2Dic15 Dic10⋊2Dic3
Q8⋊2Dic3 is a maximal quotient of
C12.C42 C12.26Q16 (C6×Q8)⋊C4 C12.5Q16 C12.10D8 Q8⋊2Dic9 Dic6⋊Dic3 C6.Dic12 C62.117D4 C30.Q16 C6.Dic20 Q8⋊2Dic15 Dic10⋊2Dic3
Matrix representation of Q8⋊2Dic3 ►in GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 65 | 64 | 0 | 0 |
0 | 64 | 8 | 0 | 0 |
0 | 0 | 0 | 30 | 13 |
0 | 0 | 0 | 60 | 43 |
72 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 72 | 0 |
46 | 0 | 0 | 0 | 0 |
0 | 29 | 6 | 0 | 0 |
0 | 6 | 44 | 0 | 0 |
0 | 0 | 0 | 5 | 18 |
0 | 0 | 0 | 23 | 68 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,0,72,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,72],[1,0,0,0,0,0,65,64,0,0,0,64,8,0,0,0,0,0,30,60,0,0,0,13,43],[72,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,72,72,0,0,0,1,0],[46,0,0,0,0,0,29,6,0,0,0,6,44,0,0,0,0,0,5,23,0,0,0,18,68] >;
Q8⋊2Dic3 in GAP, Magma, Sage, TeX
Q_8\rtimes_2{\rm Dic}_3
% in TeX
G:=Group("Q8:2Dic3");
// GroupNames label
G:=SmallGroup(96,42);
// by ID
G=gap.SmallGroup(96,42);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,24,121,103,579,297,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^6=1,b^2=a^2,d^2=c^3,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of Q8⋊2Dic3 in TeX
Character table of Q8⋊2Dic3 in TeX