direct product, non-abelian, soluble
Aliases: C2×GL2(𝔽3), Q8⋊D6, C22.5S4, SL2(𝔽3)⋊1C22, C2.6(C2×S4), (C2×Q8)⋊1S3, (C2×SL2(𝔽3))⋊2C2, SmallGroup(96,189)
Series: Derived ►Chief ►Lower central ►Upper central
SL2(𝔽3) — C2×GL2(𝔽3) |
Generators and relations for C2×GL2(𝔽3)
G = < a,b,c,d,e | a2=b4=d3=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ece=b-1, dbd-1=bc, ebe=b2c, dcd-1=b, ede=d-1 >
Character table of C2×GL2(𝔽3)
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 6A | 6B | 6C | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 12 | 12 | 8 | 6 | 6 | 8 | 8 | 8 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | -2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ7 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | 1 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from GL2(𝔽3) |
ρ8 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | -1 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from GL2(𝔽3) |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | -1 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from GL2(𝔽3) |
ρ10 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | 1 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from GL2(𝔽3) |
ρ11 | 3 | 3 | 3 | 3 | -1 | -1 | 0 | -1 | -1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from S4 |
ρ12 | 3 | 3 | -3 | -3 | -1 | 1 | 0 | -1 | 1 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×S4 |
ρ13 | 3 | 3 | 3 | 3 | 1 | 1 | 0 | -1 | -1 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S4 |
ρ14 | 3 | 3 | -3 | -3 | 1 | -1 | 0 | -1 | 1 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | orthogonal lifted from C2×S4 |
ρ15 | 4 | -4 | -4 | 4 | 0 | 0 | 1 | 0 | 0 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from GL2(𝔽3) |
ρ16 | 4 | -4 | 4 | -4 | 0 | 0 | 1 | 0 | 0 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from GL2(𝔽3) |
(1 16)(2 13)(3 14)(4 15)(5 11)(6 12)(7 9)(8 10)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 11 3 9)(2 10 4 12)(5 14 7 16)(6 13 8 15)
(2 11 10)(4 9 12)(5 8 13)(6 15 7)
(1 16)(2 7)(3 14)(4 5)(6 10)(8 12)(9 13)(11 15)
G:=sub<Sym(16)| (1,16)(2,13)(3,14)(4,15)(5,11)(6,12)(7,9)(8,10), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,11,3,9)(2,10,4,12)(5,14,7,16)(6,13,8,15), (2,11,10)(4,9,12)(5,8,13)(6,15,7), (1,16)(2,7)(3,14)(4,5)(6,10)(8,12)(9,13)(11,15)>;
G:=Group( (1,16)(2,13)(3,14)(4,15)(5,11)(6,12)(7,9)(8,10), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,11,3,9)(2,10,4,12)(5,14,7,16)(6,13,8,15), (2,11,10)(4,9,12)(5,8,13)(6,15,7), (1,16)(2,7)(3,14)(4,5)(6,10)(8,12)(9,13)(11,15) );
G=PermutationGroup([[(1,16),(2,13),(3,14),(4,15),(5,11),(6,12),(7,9),(8,10)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,11,3,9),(2,10,4,12),(5,14,7,16),(6,13,8,15)], [(2,11,10),(4,9,12),(5,8,13),(6,15,7)], [(1,16),(2,7),(3,14),(4,5),(6,10),(8,12),(9,13),(11,15)]])
G:=TransitiveGroup(16,188);
C2×GL2(𝔽3) is a maximal subgroup of
Q8⋊D12 GL2(𝔽3)⋊C4 Q8.2D12 C23.16S4 SL2(𝔽3)⋊D4 D4.4S4
C2×GL2(𝔽3) is a maximal quotient of Q8⋊Dic6 Q8⋊D12 C23.16S4
Matrix representation of C2×GL2(𝔽3) ►in GL3(𝔽73) generated by
72 | 0 | 0 |
0 | 72 | 0 |
0 | 0 | 72 |
1 | 0 | 0 |
0 | 45 | 44 |
0 | 17 | 28 |
1 | 0 | 0 |
0 | 45 | 56 |
0 | 29 | 28 |
1 | 0 | 0 |
0 | 0 | 72 |
0 | 1 | 72 |
1 | 0 | 0 |
0 | 0 | 1 |
0 | 1 | 0 |
G:=sub<GL(3,GF(73))| [72,0,0,0,72,0,0,0,72],[1,0,0,0,45,17,0,44,28],[1,0,0,0,45,29,0,56,28],[1,0,0,0,0,1,0,72,72],[1,0,0,0,0,1,0,1,0] >;
C2×GL2(𝔽3) in GAP, Magma, Sage, TeX
C_2\times {\rm GL}_2({\mathbb F}_3)
% in TeX
G:=Group("C2xGL(2,3)");
// GroupNames label
G:=SmallGroup(96,189);
// by ID
G=gap.SmallGroup(96,189);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,2,-2,146,579,447,117,364,286,202,88]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=d^3=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*c*e=b^-1,d*b*d^-1=b*c,e*b*e=b^2*c,d*c*d^-1=b,e*d*e=d^-1>;
// generators/relations
Export
Subgroup lattice of C2×GL2(𝔽3) in TeX
Character table of C2×GL2(𝔽3) in TeX