direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×Q8⋊3S3, Q8⋊6D6, C6.9C24, D12⋊9C22, D6.4C23, C12.23C23, Dic3.9C23, (C2×Q8)⋊8S3, (C6×Q8)⋊6C2, Dic3○(C2×Q8), Q8○(C2×Dic3), C6⋊3(C4○D4), (C2×C4).62D6, (C2×D12)⋊12C2, (C4×S3)⋊5C22, (C3×Q8)⋊6C22, C4.23(C22×S3), C2.10(S3×C23), (C2×C6).67C23, (C2×C12).47C22, C22.32(C22×S3), (C22×S3).30C22, (C2×Dic3).51C22, (S3×C2×C4)⋊5C2, C3⋊3(C2×C4○D4), (C2×Q8)○(C2×Dic3), SmallGroup(96,213)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×Q8⋊3S3
G = < a,b,c,d,e | a2=b4=d3=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, cd=dc, ce=ec, ede=d-1 >
Subgroups: 338 in 164 conjugacy classes, 89 normal (10 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, D6, C2×C6, C22×C4, C2×D4, C2×Q8, C4○D4, C4×S3, D12, C2×Dic3, C2×C12, C3×Q8, C22×S3, C2×C4○D4, S3×C2×C4, C2×D12, Q8⋊3S3, C6×Q8, C2×Q8⋊3S3
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, Q8⋊3S3, S3×C23, C2×Q8⋊3S3
Character table of C2×Q8⋊3S3
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | 6B | 6C | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ20 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ22 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ24 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ29 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊3S3, Schur index 2 |
ρ30 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊3S3, Schur index 2 |
(1 34)(2 35)(3 36)(4 33)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 24 3 22)(2 23 4 21)(5 44 7 42)(6 43 8 41)(9 40 11 38)(10 39 12 37)(13 30 15 32)(14 29 16 31)(17 26 19 28)(18 25 20 27)(33 45 35 47)(34 48 36 46)
(1 14 19)(2 15 20)(3 16 17)(4 13 18)(5 45 10)(6 46 11)(7 47 12)(8 48 9)(21 30 25)(22 31 26)(23 32 27)(24 29 28)(33 37 42)(34 38 43)(35 39 44)(36 40 41)
(1 34)(2 33)(3 36)(4 35)(5 32)(6 31)(7 30)(8 29)(9 28)(10 27)(11 26)(12 25)(13 44)(14 43)(15 42)(16 41)(17 40)(18 39)(19 38)(20 37)(21 47)(22 46)(23 45)(24 48)
G:=sub<Sym(48)| (1,34)(2,35)(3,36)(4,33)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,24,3,22)(2,23,4,21)(5,44,7,42)(6,43,8,41)(9,40,11,38)(10,39,12,37)(13,30,15,32)(14,29,16,31)(17,26,19,28)(18,25,20,27)(33,45,35,47)(34,48,36,46), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,45,10)(6,46,11)(7,47,12)(8,48,9)(21,30,25)(22,31,26)(23,32,27)(24,29,28)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,34)(2,33)(3,36)(4,35)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,47)(22,46)(23,45)(24,48)>;
G:=Group( (1,34)(2,35)(3,36)(4,33)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,24,3,22)(2,23,4,21)(5,44,7,42)(6,43,8,41)(9,40,11,38)(10,39,12,37)(13,30,15,32)(14,29,16,31)(17,26,19,28)(18,25,20,27)(33,45,35,47)(34,48,36,46), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,45,10)(6,46,11)(7,47,12)(8,48,9)(21,30,25)(22,31,26)(23,32,27)(24,29,28)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,34)(2,33)(3,36)(4,35)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,47)(22,46)(23,45)(24,48) );
G=PermutationGroup([[(1,34),(2,35),(3,36),(4,33),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,24,3,22),(2,23,4,21),(5,44,7,42),(6,43,8,41),(9,40,11,38),(10,39,12,37),(13,30,15,32),(14,29,16,31),(17,26,19,28),(18,25,20,27),(33,45,35,47),(34,48,36,46)], [(1,14,19),(2,15,20),(3,16,17),(4,13,18),(5,45,10),(6,46,11),(7,47,12),(8,48,9),(21,30,25),(22,31,26),(23,32,27),(24,29,28),(33,37,42),(34,38,43),(35,39,44),(36,40,41)], [(1,34),(2,33),(3,36),(4,35),(5,32),(6,31),(7,30),(8,29),(9,28),(10,27),(11,26),(12,25),(13,44),(14,43),(15,42),(16,41),(17,40),(18,39),(19,38),(20,37),(21,47),(22,46),(23,45),(24,48)]])
C2×Q8⋊3S3 is a maximal subgroup of
M4(2).21D6 Q8⋊7(C4×S3) C4⋊C4.150D6 Q8.11D12 Q8⋊4D12 D12⋊7D4 D12.17D4 C42.126D6 Q8⋊6D12 Q8⋊7D12 C4⋊C4⋊26D6 C6.172- 1+4 D12⋊21D4 D12⋊22D4 C42.233D6 C42⋊20D6 D12⋊10D4 C42.171D6 C42.240D6 D12⋊12D4 D24⋊C22 C6.452- 1+4 C6.1482+ 1+4 C2×S3×C4○D4 D12.39C23
C2×Q8⋊3S3 is a maximal quotient of
C6.112+ 1+4 Q8⋊7Dic6 Q8⋊7D12 C42.131D6 C42.135D6 C42.136D6 C4⋊C4.187D6 C4⋊C4⋊26D6 D12⋊21D4 C6.532+ 1+4 C6.772- 1+4 C6.562+ 1+4 C6.782- 1+4 C42.237D6 C42.152D6 C42.153D6 C42.155D6 C42.156D6 C42.240D6 D12⋊12D4 C42.241D6 D12⋊9Q8 C42.177D6 C42.178D6 C42.179D6 C2×Q8×Dic3 C6.452- 1+4
Matrix representation of C2×Q8⋊3S3 ►in GL4(𝔽13) generated by
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 12 | 3 |
0 | 0 | 8 | 1 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 5 | 0 |
0 | 0 | 12 | 8 |
12 | 1 | 0 | 0 |
12 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 |
12 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 5 | 12 |
G:=sub<GL(4,GF(13))| [12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,12,8,0,0,3,1],[12,0,0,0,0,12,0,0,0,0,5,12,0,0,0,8],[12,12,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,12,0,0,12,0,0,0,0,0,1,5,0,0,0,12] >;
C2×Q8⋊3S3 in GAP, Magma, Sage, TeX
C_2\times Q_8\rtimes_3S_3
% in TeX
G:=Group("C2xQ8:3S3");
// GroupNames label
G:=SmallGroup(96,213);
// by ID
G=gap.SmallGroup(96,213);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,86,579,159,69,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=d^3=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export