Extensions 1→N→G→Q→1 with N=S3xD4 and Q=C2

Direct product G=NxQ with N=S3xD4 and Q=C2
dρLabelID
C2xS3xD424C2xS3xD496,209

Semidirect products G=N:Q with N=S3xD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xD4):1C2 = S3xD8φ: C2/C1C2 ⊆ Out S3xD4244+(S3xD4):1C296,117
(S3xD4):2C2 = D8:S3φ: C2/C1C2 ⊆ Out S3xD4244(S3xD4):2C296,118
(S3xD4):3C2 = Q8:3D6φ: C2/C1C2 ⊆ Out S3xD4244+(S3xD4):3C296,121
(S3xD4):4C2 = D4:6D6φ: C2/C1C2 ⊆ Out S3xD4244(S3xD4):4C296,211
(S3xD4):5C2 = D4oD12φ: C2/C1C2 ⊆ Out S3xD4244+(S3xD4):5C296,216
(S3xD4):6C2 = S3xC4oD4φ: trivial image244(S3xD4):6C296,215

Non-split extensions G=N.Q with N=S3xD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xD4).C2 = S3xSD16φ: C2/C1C2 ⊆ Out S3xD4244(S3xD4).C296,120

׿
x
:
Z
F
o
wr
Q
<