Extensions 1→N→G→Q→1 with N=S3xC8 and Q=C2

Direct product G=NxQ with N=S3xC8 and Q=C2
dρLabelID
S3xC2xC848S3xC2xC896,106

Semidirect products G=N:Q with N=S3xC8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC8):1C2 = S3xD8φ: C2/C1C2 ⊆ Out S3xC8244+(S3xC8):1C296,117
(S3xC8):2C2 = D8:3S3φ: C2/C1C2 ⊆ Out S3xC8484-(S3xC8):2C296,119
(S3xC8):3C2 = D24:C2φ: C2/C1C2 ⊆ Out S3xC8484+(S3xC8):3C296,126
(S3xC8):4C2 = S3xSD16φ: C2/C1C2 ⊆ Out S3xC8244(S3xC8):4C296,120
(S3xC8):5C2 = Q8.7D6φ: C2/C1C2 ⊆ Out S3xC8484(S3xC8):5C296,123
(S3xC8):6C2 = C8oD12φ: C2/C1C2 ⊆ Out S3xC8482(S3xC8):6C296,108
(S3xC8):7C2 = S3xM4(2)φ: C2/C1C2 ⊆ Out S3xC8244(S3xC8):7C296,113
(S3xC8):8C2 = D12.C4φ: C2/C1C2 ⊆ Out S3xC8484(S3xC8):8C296,114

Non-split extensions G=N.Q with N=S3xC8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC8).1C2 = S3xQ16φ: C2/C1C2 ⊆ Out S3xC8484-(S3xC8).1C296,124
(S3xC8).2C2 = D6.C8φ: C2/C1C2 ⊆ Out S3xC8482(S3xC8).2C296,5
(S3xC8).3C2 = S3xC16φ: trivial image482(S3xC8).3C296,4

׿
x
:
Z
F
o
wr
Q
<