Copied to
clipboard

G = Q8.7D6order 96 = 25·3

2nd non-split extension by Q8 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6.2D4, D4.5D6, C8.11D6, Q8.7D6, Dic3SD16, SD163S3, C12.7C23, C24.11C22, Dic3.13D4, D12.3C22, Dic6.3C22, (S3×C8)⋊5C2, D4⋊S34C2, C33(C4○D8), C24⋊C26C2, C3⋊Q162C2, C6.33(C2×D4), C2.21(S3×D4), C3⋊C8.6C22, D42S33C2, Q83S32C2, (C3×SD16)⋊4C2, C4.7(C22×S3), (C3×D4).5C22, (C3×Q8).2C22, (C4×S3).10C22, SmallGroup(96,123)

Series: Derived Chief Lower central Upper central

C1C12 — Q8.7D6
C1C3C6C12C4×S3D42S3 — Q8.7D6
C3C6C12 — Q8.7D6
C1C2C4SD16

Generators and relations for Q8.7D6
 G = < a,b,c,d | a4=c6=1, b2=d2=a2, bab-1=cac-1=dad-1=a-1, cbc-1=a-1b, dbd-1=ab, dcd-1=a2c-1 >

Subgroups: 154 in 62 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, D4, Q8, Q8, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C8, D8, SD16, SD16, Q16, C4○D4, C3⋊C8, C24, Dic6, C4×S3, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C3×D4, C3×Q8, C4○D8, S3×C8, C24⋊C2, D4⋊S3, C3⋊Q16, C3×SD16, D42S3, Q83S3, Q8.7D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, C4○D8, S3×D4, Q8.7D6

Character table of Q8.7D6

 class 12A2B2C2D34A4B4C4D4E6A6B8A8B8C8D12A12B24A24B
 size 11461222334122822664844
ρ1111111111111111111111    trivial
ρ2111-1111-1-1-1-111-1-1111-1-1-1    linear of order 2
ρ311-1-1-111-1-1111-1-1-11111-1-1    linear of order 2
ρ4111-1-111-1-11-11111-1-11111    linear of order 2
ρ511-1-1111-1-1-111-111-1-11-111    linear of order 2
ρ611-11-11111-1-11-111111-111    linear of order 2
ρ71111-11111-1111-1-1-1-11-1-1-1    linear of order 2
ρ811-11111111-11-1-1-1-1-111-1-1    linear of order 2
ρ922-200-120020-11-2-200-1-111    orthogonal lifted from D6
ρ10220-202-22200200000-2000    orthogonal lifted from D4
ρ1122200-1200-20-1-1-2-200-1111    orthogonal lifted from D6
ρ1222200-120020-1-12200-1-1-1-1    orthogonal lifted from S3
ρ1322-200-1200-20-112200-11-1-1    orthogonal lifted from D6
ρ14220202-2-2-200200000-2000    orthogonal lifted from D4
ρ152-200020-2i2i00-20-2--22-200-2--2    complex lifted from C4○D8
ρ162-2000202i-2i00-20-2--2-2200-2--2    complex lifted from C4○D8
ρ172-200020-2i2i00-20--2-2-2200--2-2    complex lifted from C4○D8
ρ182-2000202i-2i00-20--2-22-200--2-2    complex lifted from C4○D8
ρ1944000-2-40000-2000002000    orthogonal lifted from S3×D4
ρ204-4000-200000202-2-2-20000--2-2    complex faithful, Schur index 2
ρ214-4000-20000020-2-22-20000-2--2    complex faithful, Schur index 2

Smallest permutation representation of Q8.7D6
On 48 points
Generators in S48
(1 23 37 33)(2 34 38 24)(3 19 39 35)(4 36 40 20)(5 21 41 31)(6 32 42 22)(7 43 27 13)(8 14 28 44)(9 45 29 15)(10 16 30 46)(11 47 25 17)(12 18 26 48)
(1 43 37 13)(2 28 38 8)(3 45 39 15)(4 30 40 10)(5 47 41 17)(6 26 42 12)(7 33 27 23)(9 35 29 19)(11 31 25 21)(14 24 44 34)(16 20 46 36)(18 22 48 32)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18 37 48)(2 47 38 17)(3 16 39 46)(4 45 40 15)(5 14 41 44)(6 43 42 13)(7 22 27 32)(8 31 28 21)(9 20 29 36)(10 35 30 19)(11 24 25 34)(12 33 26 23)

G:=sub<Sym(48)| (1,23,37,33)(2,34,38,24)(3,19,39,35)(4,36,40,20)(5,21,41,31)(6,32,42,22)(7,43,27,13)(8,14,28,44)(9,45,29,15)(10,16,30,46)(11,47,25,17)(12,18,26,48), (1,43,37,13)(2,28,38,8)(3,45,39,15)(4,30,40,10)(5,47,41,17)(6,26,42,12)(7,33,27,23)(9,35,29,19)(11,31,25,21)(14,24,44,34)(16,20,46,36)(18,22,48,32), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,37,48)(2,47,38,17)(3,16,39,46)(4,45,40,15)(5,14,41,44)(6,43,42,13)(7,22,27,32)(8,31,28,21)(9,20,29,36)(10,35,30,19)(11,24,25,34)(12,33,26,23)>;

G:=Group( (1,23,37,33)(2,34,38,24)(3,19,39,35)(4,36,40,20)(5,21,41,31)(6,32,42,22)(7,43,27,13)(8,14,28,44)(9,45,29,15)(10,16,30,46)(11,47,25,17)(12,18,26,48), (1,43,37,13)(2,28,38,8)(3,45,39,15)(4,30,40,10)(5,47,41,17)(6,26,42,12)(7,33,27,23)(9,35,29,19)(11,31,25,21)(14,24,44,34)(16,20,46,36)(18,22,48,32), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,37,48)(2,47,38,17)(3,16,39,46)(4,45,40,15)(5,14,41,44)(6,43,42,13)(7,22,27,32)(8,31,28,21)(9,20,29,36)(10,35,30,19)(11,24,25,34)(12,33,26,23) );

G=PermutationGroup([[(1,23,37,33),(2,34,38,24),(3,19,39,35),(4,36,40,20),(5,21,41,31),(6,32,42,22),(7,43,27,13),(8,14,28,44),(9,45,29,15),(10,16,30,46),(11,47,25,17),(12,18,26,48)], [(1,43,37,13),(2,28,38,8),(3,45,39,15),(4,30,40,10),(5,47,41,17),(6,26,42,12),(7,33,27,23),(9,35,29,19),(11,31,25,21),(14,24,44,34),(16,20,46,36),(18,22,48,32)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18,37,48),(2,47,38,17),(3,16,39,46),(4,45,40,15),(5,14,41,44),(6,43,42,13),(7,22,27,32),(8,31,28,21),(9,20,29,36),(10,35,30,19),(11,24,25,34),(12,33,26,23)]])

Q8.7D6 is a maximal subgroup of
SD1613D6  S3×C4○D8  D811D6  D84D6  D85D6  D24⋊C22  SD16.D6  SD163D9  D6.1D12  D12.2D6  Dic6.20D6  D12.8D6  D12.12D6  D12.14D6  C24.40D6  Dic3.4S4  D6.1D20  Dic6.D10  C60.19C23  D30.11D4  D20.27D6  D20.16D6  D4.5D30
Q8.7D6 is a maximal quotient of
Dic34D8  D4.Dic6  (C2×C8).200D6  D42S3⋊C4  D6⋊D8  D6⋊C811C2  D43D12  D12.D4  Dic34Q16  Dic6.11D4  Q8.4Dic6  Q8⋊C4⋊S3  C4⋊C4.150D6  Q8.11D12  D61Q16  C8⋊Dic3⋊C2  Dic38SD16  Dic6.Q8  C8.8Dic6  (S3×C8)⋊C4  C88D12  C4.Q8⋊S3  C6.(C4○D8)  D12.Q8  Dic3×SD16  (C3×D4).D4  (C3×Q8).D4  C24.43D4  C2414D4  D127D4  Dic6.16D4  SD163D9  D6.1D12  D12.2D6  Dic6.20D6  D12.8D6  D12.12D6  D12.14D6  C24.40D6  D6.1D20  Dic6.D10  C60.19C23  D30.11D4  D20.27D6  D20.16D6  D4.5D30

Matrix representation of Q8.7D6 in GL4(𝔽73) generated by

0100
72000
0010
0001
,
02700
27000
00720
00072
,
161600
165700
0001
00721
,
66700
676700
00172
00072
G:=sub<GL(4,GF(73))| [0,72,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,27,0,0,27,0,0,0,0,0,72,0,0,0,0,72],[16,16,0,0,16,57,0,0,0,0,0,72,0,0,1,1],[6,67,0,0,67,67,0,0,0,0,1,0,0,0,72,72] >;

Q8.7D6 in GAP, Magma, Sage, TeX

Q_8._7D_6
% in TeX

G:=Group("Q8.7D6");
// GroupNames label

G:=SmallGroup(96,123);
// by ID

G=gap.SmallGroup(96,123);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,362,116,86,297,159,69,2309]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^6=1,b^2=d^2=a^2,b*a*b^-1=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^-1*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

Export

Character table of Q8.7D6 in TeX

׿
×
𝔽