metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D6.2D4, D4.5D6, C8.11D6, Q8.7D6, Dic3○SD16, SD16⋊3S3, C12.7C23, C24.11C22, Dic3.13D4, D12.3C22, Dic6.3C22, (S3×C8)⋊5C2, D4⋊S3⋊4C2, C3⋊3(C4○D8), C24⋊C2⋊6C2, C3⋊Q16⋊2C2, C6.33(C2×D4), C2.21(S3×D4), C3⋊C8.6C22, D4⋊2S3⋊3C2, Q8⋊3S3⋊2C2, (C3×SD16)⋊4C2, C4.7(C22×S3), (C3×D4).5C22, (C3×Q8).2C22, (C4×S3).10C22, SmallGroup(96,123)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8.7D6
G = < a,b,c,d | a4=c6=1, b2=d2=a2, bab-1=cac-1=dad-1=a-1, cbc-1=a-1b, dbd-1=ab, dcd-1=a2c-1 >
Subgroups: 154 in 62 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, D4, Q8, Q8, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C8, D8, SD16, SD16, Q16, C4○D4, C3⋊C8, C24, Dic6, C4×S3, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C3×D4, C3×Q8, C4○D8, S3×C8, C24⋊C2, D4⋊S3, C3⋊Q16, C3×SD16, D4⋊2S3, Q8⋊3S3, Q8.7D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, C4○D8, S3×D4, Q8.7D6
Character table of Q8.7D6
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 8A | 8B | 8C | 8D | 12A | 12B | 24A | 24B | |
size | 1 | 1 | 4 | 6 | 12 | 2 | 2 | 3 | 3 | 4 | 12 | 2 | 8 | 2 | 2 | 6 | 6 | 4 | 8 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 2 | 0 | -1 | 1 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | -2 | 0 | 2 | -2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 0 | 0 | -2 | 0 | -1 | -1 | -2 | -2 | 0 | 0 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 0 | 0 | 2 | 0 | -1 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | -2 | 0 | -1 | 1 | 2 | 2 | 0 | 0 | -1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 2 | 0 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2i | 2i | 0 | 0 | -2 | 0 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 2i | -2i | 0 | 0 | -2 | 0 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2i | 2i | 0 | 0 | -2 | 0 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 2i | -2i | 0 | 0 | -2 | 0 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ19 | 4 | 4 | 0 | 0 | 0 | -2 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | complex faithful, Schur index 2 |
ρ21 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | complex faithful, Schur index 2 |
(1 23 37 33)(2 34 38 24)(3 19 39 35)(4 36 40 20)(5 21 41 31)(6 32 42 22)(7 43 27 13)(8 14 28 44)(9 45 29 15)(10 16 30 46)(11 47 25 17)(12 18 26 48)
(1 43 37 13)(2 28 38 8)(3 45 39 15)(4 30 40 10)(5 47 41 17)(6 26 42 12)(7 33 27 23)(9 35 29 19)(11 31 25 21)(14 24 44 34)(16 20 46 36)(18 22 48 32)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18 37 48)(2 47 38 17)(3 16 39 46)(4 45 40 15)(5 14 41 44)(6 43 42 13)(7 22 27 32)(8 31 28 21)(9 20 29 36)(10 35 30 19)(11 24 25 34)(12 33 26 23)
G:=sub<Sym(48)| (1,23,37,33)(2,34,38,24)(3,19,39,35)(4,36,40,20)(5,21,41,31)(6,32,42,22)(7,43,27,13)(8,14,28,44)(9,45,29,15)(10,16,30,46)(11,47,25,17)(12,18,26,48), (1,43,37,13)(2,28,38,8)(3,45,39,15)(4,30,40,10)(5,47,41,17)(6,26,42,12)(7,33,27,23)(9,35,29,19)(11,31,25,21)(14,24,44,34)(16,20,46,36)(18,22,48,32), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,37,48)(2,47,38,17)(3,16,39,46)(4,45,40,15)(5,14,41,44)(6,43,42,13)(7,22,27,32)(8,31,28,21)(9,20,29,36)(10,35,30,19)(11,24,25,34)(12,33,26,23)>;
G:=Group( (1,23,37,33)(2,34,38,24)(3,19,39,35)(4,36,40,20)(5,21,41,31)(6,32,42,22)(7,43,27,13)(8,14,28,44)(9,45,29,15)(10,16,30,46)(11,47,25,17)(12,18,26,48), (1,43,37,13)(2,28,38,8)(3,45,39,15)(4,30,40,10)(5,47,41,17)(6,26,42,12)(7,33,27,23)(9,35,29,19)(11,31,25,21)(14,24,44,34)(16,20,46,36)(18,22,48,32), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,37,48)(2,47,38,17)(3,16,39,46)(4,45,40,15)(5,14,41,44)(6,43,42,13)(7,22,27,32)(8,31,28,21)(9,20,29,36)(10,35,30,19)(11,24,25,34)(12,33,26,23) );
G=PermutationGroup([[(1,23,37,33),(2,34,38,24),(3,19,39,35),(4,36,40,20),(5,21,41,31),(6,32,42,22),(7,43,27,13),(8,14,28,44),(9,45,29,15),(10,16,30,46),(11,47,25,17),(12,18,26,48)], [(1,43,37,13),(2,28,38,8),(3,45,39,15),(4,30,40,10),(5,47,41,17),(6,26,42,12),(7,33,27,23),(9,35,29,19),(11,31,25,21),(14,24,44,34),(16,20,46,36),(18,22,48,32)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18,37,48),(2,47,38,17),(3,16,39,46),(4,45,40,15),(5,14,41,44),(6,43,42,13),(7,22,27,32),(8,31,28,21),(9,20,29,36),(10,35,30,19),(11,24,25,34),(12,33,26,23)]])
Q8.7D6 is a maximal subgroup of
SD16⋊13D6 S3×C4○D8 D8⋊11D6 D8⋊4D6 D8⋊5D6 D24⋊C22 SD16.D6 SD16⋊3D9 D6.1D12 D12.2D6 Dic6.20D6 D12.8D6 D12.12D6 D12.14D6 C24.40D6 Dic3.4S4 D6.1D20 Dic6.D10 C60.19C23 D30.11D4 D20.27D6 D20.16D6 D4.5D30
Q8.7D6 is a maximal quotient of
Dic3⋊4D8 D4.Dic6 (C2×C8).200D6 D4⋊2S3⋊C4 D6⋊D8 D6⋊C8⋊11C2 D4⋊3D12 D12.D4 Dic3⋊4Q16 Dic6.11D4 Q8.4Dic6 Q8⋊C4⋊S3 C4⋊C4.150D6 Q8.11D12 D6⋊1Q16 C8⋊Dic3⋊C2 Dic3⋊8SD16 Dic6.Q8 C8.8Dic6 (S3×C8)⋊C4 C8⋊8D12 C4.Q8⋊S3 C6.(C4○D8) D12.Q8 Dic3×SD16 (C3×D4).D4 (C3×Q8).D4 C24.43D4 C24⋊14D4 D12⋊7D4 Dic6.16D4 SD16⋊3D9 D6.1D12 D12.2D6 Dic6.20D6 D12.8D6 D12.12D6 D12.14D6 C24.40D6 D6.1D20 Dic6.D10 C60.19C23 D30.11D4 D20.27D6 D20.16D6 D4.5D30
Matrix representation of Q8.7D6 ►in GL4(𝔽73) generated by
0 | 1 | 0 | 0 |
72 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 27 | 0 | 0 |
27 | 0 | 0 | 0 |
0 | 0 | 72 | 0 |
0 | 0 | 0 | 72 |
16 | 16 | 0 | 0 |
16 | 57 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 72 | 1 |
6 | 67 | 0 | 0 |
67 | 67 | 0 | 0 |
0 | 0 | 1 | 72 |
0 | 0 | 0 | 72 |
G:=sub<GL(4,GF(73))| [0,72,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,27,0,0,27,0,0,0,0,0,72,0,0,0,0,72],[16,16,0,0,16,57,0,0,0,0,0,72,0,0,1,1],[6,67,0,0,67,67,0,0,0,0,1,0,0,0,72,72] >;
Q8.7D6 in GAP, Magma, Sage, TeX
Q_8._7D_6
% in TeX
G:=Group("Q8.7D6");
// GroupNames label
G:=SmallGroup(96,123);
// by ID
G=gap.SmallGroup(96,123);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,362,116,86,297,159,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^6=1,b^2=d^2=a^2,b*a*b^-1=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^-1*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^-1>;
// generators/relations
Export