Extensions 1→N→G→Q→1 with N=C2×Dic5 and Q=C2

Direct product G=N×Q with N=C2×Dic5 and Q=C2
dρLabelID
C22×Dic580C2^2xDic580,43

Semidirect products G=N:Q with N=C2×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic5)⋊1C2 = D10⋊C4φ: C2/C1C2 ⊆ Out C2×Dic540(C2xDic5):1C280,14
(C2×Dic5)⋊2C2 = C23.D5φ: C2/C1C2 ⊆ Out C2×Dic540(C2xDic5):2C280,19
(C2×Dic5)⋊3C2 = D42D5φ: C2/C1C2 ⊆ Out C2×Dic5404-(C2xDic5):3C280,40
(C2×Dic5)⋊4C2 = C2×C5⋊D4φ: C2/C1C2 ⊆ Out C2×Dic540(C2xDic5):4C280,44
(C2×Dic5)⋊5C2 = C2×C4×D5φ: trivial image40(C2xDic5):5C280,36

Non-split extensions G=N.Q with N=C2×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic5).1C2 = C10.D4φ: C2/C1C2 ⊆ Out C2×Dic580(C2xDic5).1C280,12
(C2×Dic5).2C2 = C4⋊Dic5φ: C2/C1C2 ⊆ Out C2×Dic580(C2xDic5).2C280,13
(C2×Dic5).3C2 = C2×Dic10φ: C2/C1C2 ⊆ Out C2×Dic580(C2xDic5).3C280,35
(C2×Dic5).4C2 = C2×C5⋊C8φ: C2/C1C2 ⊆ Out C2×Dic580(C2xDic5).4C280,32
(C2×Dic5).5C2 = C22.F5φ: C2/C1C2 ⊆ Out C2×Dic5404-(C2xDic5).5C280,33
(C2×Dic5).6C2 = C4×Dic5φ: trivial image80(C2xDic5).6C280,11

׿
×
𝔽