direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×C5⋊C8, C10⋊C8, C22.2F5, Dic5.2C4, Dic5.6C22, C5⋊2(C2×C8), C2.3(C2×F5), (C2×C10).1C4, C10.5(C2×C4), (C2×Dic5).4C2, SmallGroup(80,32)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C5⋊C8 — C2×C5⋊C8 |
C5 — C2×C5⋊C8 |
Generators and relations for C2×C5⋊C8
G = < a,b,c | a2=b5=c8=1, ab=ba, ac=ca, cbc-1=b3 >
Character table of C2×C5⋊C8
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 5 | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 10A | 10B | 10C | |
size | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | i | -i | -i | i | i | -i | -i | i | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -i | i | i | -i | -i | i | i | -i | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -i | -i | -i | i | i | i | i | -i | -1 | -1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | i | i | i | -i | -i | -i | -i | i | -1 | -1 | 1 | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | -i | i | -i | i | 1 | ζ85 | ζ83 | ζ87 | ζ8 | ζ85 | ζ83 | ζ87 | ζ8 | 1 | -1 | -1 | linear of order 8 |
ρ10 | 1 | -1 | 1 | -1 | i | -i | i | -i | 1 | ζ87 | ζ8 | ζ85 | ζ83 | ζ87 | ζ8 | ζ85 | ζ83 | 1 | -1 | -1 | linear of order 8 |
ρ11 | 1 | -1 | 1 | -1 | -i | i | -i | i | 1 | ζ8 | ζ87 | ζ83 | ζ85 | ζ8 | ζ87 | ζ83 | ζ85 | 1 | -1 | -1 | linear of order 8 |
ρ12 | 1 | -1 | 1 | -1 | i | -i | i | -i | 1 | ζ83 | ζ85 | ζ8 | ζ87 | ζ83 | ζ85 | ζ8 | ζ87 | 1 | -1 | -1 | linear of order 8 |
ρ13 | 1 | -1 | -1 | 1 | -i | -i | i | i | 1 | ζ87 | ζ85 | ζ8 | ζ87 | ζ83 | ζ8 | ζ85 | ζ83 | -1 | 1 | -1 | linear of order 8 |
ρ14 | 1 | -1 | -1 | 1 | i | i | -i | -i | 1 | ζ8 | ζ83 | ζ87 | ζ8 | ζ85 | ζ87 | ζ83 | ζ85 | -1 | 1 | -1 | linear of order 8 |
ρ15 | 1 | -1 | -1 | 1 | i | i | -i | -i | 1 | ζ85 | ζ87 | ζ83 | ζ85 | ζ8 | ζ83 | ζ87 | ζ8 | -1 | 1 | -1 | linear of order 8 |
ρ16 | 1 | -1 | -1 | 1 | -i | -i | i | i | 1 | ζ83 | ζ8 | ζ85 | ζ83 | ζ87 | ζ85 | ζ8 | ζ87 | -1 | 1 | -1 | linear of order 8 |
ρ17 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ18 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | orthogonal lifted from C2×F5 |
ρ19 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | symplectic lifted from C5⋊C8, Schur index 2 |
ρ20 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | symplectic lifted from C5⋊C8, Schur index 2 |
(1 69)(2 70)(3 71)(4 72)(5 65)(6 66)(7 67)(8 68)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 33)(16 34)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(49 63)(50 64)(51 57)(52 58)(53 59)(54 60)(55 61)(56 62)
(1 33 75 19 57)(2 20 34 58 76)(3 59 21 77 35)(4 78 60 36 22)(5 37 79 23 61)(6 24 38 62 80)(7 63 17 73 39)(8 74 64 40 18)(9 71 53 45 29)(10 46 72 30 54)(11 31 47 55 65)(12 56 32 66 48)(13 67 49 41 25)(14 42 68 26 50)(15 27 43 51 69)(16 52 28 70 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
G:=sub<Sym(80)| (1,69)(2,70)(3,71)(4,72)(5,65)(6,66)(7,67)(8,68)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,33)(16,34)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(49,63)(50,64)(51,57)(52,58)(53,59)(54,60)(55,61)(56,62), (1,33,75,19,57)(2,20,34,58,76)(3,59,21,77,35)(4,78,60,36,22)(5,37,79,23,61)(6,24,38,62,80)(7,63,17,73,39)(8,74,64,40,18)(9,71,53,45,29)(10,46,72,30,54)(11,31,47,55,65)(12,56,32,66,48)(13,67,49,41,25)(14,42,68,26,50)(15,27,43,51,69)(16,52,28,70,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;
G:=Group( (1,69)(2,70)(3,71)(4,72)(5,65)(6,66)(7,67)(8,68)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,33)(16,34)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(49,63)(50,64)(51,57)(52,58)(53,59)(54,60)(55,61)(56,62), (1,33,75,19,57)(2,20,34,58,76)(3,59,21,77,35)(4,78,60,36,22)(5,37,79,23,61)(6,24,38,62,80)(7,63,17,73,39)(8,74,64,40,18)(9,71,53,45,29)(10,46,72,30,54)(11,31,47,55,65)(12,56,32,66,48)(13,67,49,41,25)(14,42,68,26,50)(15,27,43,51,69)(16,52,28,70,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );
G=PermutationGroup([[(1,69),(2,70),(3,71),(4,72),(5,65),(6,66),(7,67),(8,68),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,33),(16,34),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(49,63),(50,64),(51,57),(52,58),(53,59),(54,60),(55,61),(56,62)], [(1,33,75,19,57),(2,20,34,58,76),(3,59,21,77,35),(4,78,60,36,22),(5,37,79,23,61),(6,24,38,62,80),(7,63,17,73,39),(8,74,64,40,18),(9,71,53,45,29),(10,46,72,30,54),(11,31,47,55,65),(12,56,32,66,48),(13,67,49,41,25),(14,42,68,26,50),(15,27,43,51,69),(16,52,28,70,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])
C2×C5⋊C8 is a maximal subgroup of
C20⋊C8 C10.C42 D10⋊C8 Dic5⋊C8 C23.2F5 D4.F5 D10.2F5 C22.2S5
C2×C5⋊C8 is a maximal quotient of
C20.C8 C20⋊C8 C23.2F5 D10.2F5
Matrix representation of C2×C5⋊C8 ►in GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 |
0 | 1 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 1 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 12 | 31 |
0 | 21 | 31 | 1 | 40 |
0 | 10 | 40 | 1 | 11 |
0 | 10 | 11 | 32 | 0 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,40,40,40,40],[40,0,0,0,0,0,9,21,10,10,0,0,31,40,11,0,12,1,1,32,0,31,40,11,0] >;
C2×C5⋊C8 in GAP, Magma, Sage, TeX
C_2\times C_5\rtimes C_8
% in TeX
G:=Group("C2xC5:C8");
// GroupNames label
G:=SmallGroup(80,32);
// by ID
G=gap.SmallGroup(80,32);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,20,42,804,414]);
// Polycyclic
G:=Group<a,b,c|a^2=b^5=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations
Export
Subgroup lattice of C2×C5⋊C8 in TeX
Character table of C2×C5⋊C8 in TeX