Extensions 1→N→G→Q→1 with N=C6 and Q=M4(2)

Direct product G=N×Q with N=C6 and Q=M4(2)

Semidirect products G=N:Q with N=C6 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C61M4(2) = C2×C8⋊S3φ: M4(2)/C8C2 ⊆ Aut C648C6:1M4(2)96,107
C62M4(2) = C2×C4.Dic3φ: M4(2)/C2×C4C2 ⊆ Aut C648C6:2M4(2)96,128

Non-split extensions G=N.Q with N=C6 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C6.1M4(2) = Dic3⋊C8φ: M4(2)/C8C2 ⊆ Aut C696C6.1M4(2)96,21
C6.2M4(2) = C24⋊C4φ: M4(2)/C8C2 ⊆ Aut C696C6.2M4(2)96,22
C6.3M4(2) = D6⋊C8φ: M4(2)/C8C2 ⊆ Aut C648C6.3M4(2)96,27
C6.4M4(2) = C42.S3φ: M4(2)/C2×C4C2 ⊆ Aut C696C6.4M4(2)96,10
C6.5M4(2) = C12⋊C8φ: M4(2)/C2×C4C2 ⊆ Aut C696C6.5M4(2)96,11
C6.6M4(2) = C12.55D4φ: M4(2)/C2×C4C2 ⊆ Aut C648C6.6M4(2)96,37
C6.7M4(2) = C3×C8⋊C4central extension (φ=1)96C6.7M4(2)96,47
C6.8M4(2) = C3×C22⋊C8central extension (φ=1)48C6.8M4(2)96,48
C6.9M4(2) = C3×C4⋊C8central extension (φ=1)96C6.9M4(2)96,55