Copied to
clipboard

G = C3xC4:C8order 96 = 25·3

Direct product of C3 and C4:C8

direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary

Aliases: C3xC4:C8, C4:C24, C12:3C8, C12.67D4, C42.2C6, C12.12Q8, C6.9M4(2), (C2xC8).2C6, C4.4(C3xQ8), C2.2(C2xC24), (C2xC24).4C2, (C4xC12).8C2, C6.12(C2xC8), (C2xC4).4C12, C4.18(C3xD4), C6.11(C4:C4), (C2xC12).13C4, C2.3(C3xM4(2)), C22.10(C2xC12), (C2xC12).136C22, C2.2(C3xC4:C4), (C2xC6).39(C2xC4), (C2xC4).32(C2xC6), SmallGroup(96,55)

Series: Derived Chief Lower central Upper central

C1C2 — C3xC4:C8
C1C2C4C2xC4C2xC12C2xC24 — C3xC4:C8
C1C2 — C3xC4:C8
C1C2xC12 — C3xC4:C8

Generators and relations for C3xC4:C8
 G = < a,b,c | a3=b4=c8=1, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 44 in 38 conjugacy classes, 32 normal (24 characteristic)
Quotients: C1, C2, C3, C4, C22, C6, C8, C2xC4, D4, Q8, C12, C2xC6, C4:C4, C2xC8, M4(2), C24, C2xC12, C3xD4, C3xQ8, C4:C8, C3xC4:C4, C2xC24, C3xM4(2), C3xC4:C8
2C4
2C8
2C8
2C12
2C24
2C24

Smallest permutation representation of C3xC4:C8
Regular action on 96 points
Generators in S96
(1 67 19)(2 68 20)(3 69 21)(4 70 22)(5 71 23)(6 72 24)(7 65 17)(8 66 18)(9 30 60)(10 31 61)(11 32 62)(12 25 63)(13 26 64)(14 27 57)(15 28 58)(16 29 59)(33 73 81)(34 74 82)(35 75 83)(36 76 84)(37 77 85)(38 78 86)(39 79 87)(40 80 88)(41 53 89)(42 54 90)(43 55 91)(44 56 92)(45 49 93)(46 50 94)(47 51 95)(48 52 96)
(1 43 79 31)(2 32 80 44)(3 45 73 25)(4 26 74 46)(5 47 75 27)(6 28 76 48)(7 41 77 29)(8 30 78 42)(9 38 90 18)(10 19 91 39)(11 40 92 20)(12 21 93 33)(13 34 94 22)(14 23 95 35)(15 36 96 24)(16 17 89 37)(49 81 63 69)(50 70 64 82)(51 83 57 71)(52 72 58 84)(53 85 59 65)(54 66 60 86)(55 87 61 67)(56 68 62 88)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,67,19)(2,68,20)(3,69,21)(4,70,22)(5,71,23)(6,72,24)(7,65,17)(8,66,18)(9,30,60)(10,31,61)(11,32,62)(12,25,63)(13,26,64)(14,27,57)(15,28,58)(16,29,59)(33,73,81)(34,74,82)(35,75,83)(36,76,84)(37,77,85)(38,78,86)(39,79,87)(40,80,88)(41,53,89)(42,54,90)(43,55,91)(44,56,92)(45,49,93)(46,50,94)(47,51,95)(48,52,96), (1,43,79,31)(2,32,80,44)(3,45,73,25)(4,26,74,46)(5,47,75,27)(6,28,76,48)(7,41,77,29)(8,30,78,42)(9,38,90,18)(10,19,91,39)(11,40,92,20)(12,21,93,33)(13,34,94,22)(14,23,95,35)(15,36,96,24)(16,17,89,37)(49,81,63,69)(50,70,64,82)(51,83,57,71)(52,72,58,84)(53,85,59,65)(54,66,60,86)(55,87,61,67)(56,68,62,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)>;

G:=Group( (1,67,19)(2,68,20)(3,69,21)(4,70,22)(5,71,23)(6,72,24)(7,65,17)(8,66,18)(9,30,60)(10,31,61)(11,32,62)(12,25,63)(13,26,64)(14,27,57)(15,28,58)(16,29,59)(33,73,81)(34,74,82)(35,75,83)(36,76,84)(37,77,85)(38,78,86)(39,79,87)(40,80,88)(41,53,89)(42,54,90)(43,55,91)(44,56,92)(45,49,93)(46,50,94)(47,51,95)(48,52,96), (1,43,79,31)(2,32,80,44)(3,45,73,25)(4,26,74,46)(5,47,75,27)(6,28,76,48)(7,41,77,29)(8,30,78,42)(9,38,90,18)(10,19,91,39)(11,40,92,20)(12,21,93,33)(13,34,94,22)(14,23,95,35)(15,36,96,24)(16,17,89,37)(49,81,63,69)(50,70,64,82)(51,83,57,71)(52,72,58,84)(53,85,59,65)(54,66,60,86)(55,87,61,67)(56,68,62,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,67,19),(2,68,20),(3,69,21),(4,70,22),(5,71,23),(6,72,24),(7,65,17),(8,66,18),(9,30,60),(10,31,61),(11,32,62),(12,25,63),(13,26,64),(14,27,57),(15,28,58),(16,29,59),(33,73,81),(34,74,82),(35,75,83),(36,76,84),(37,77,85),(38,78,86),(39,79,87),(40,80,88),(41,53,89),(42,54,90),(43,55,91),(44,56,92),(45,49,93),(46,50,94),(47,51,95),(48,52,96)], [(1,43,79,31),(2,32,80,44),(3,45,73,25),(4,26,74,46),(5,47,75,27),(6,28,76,48),(7,41,77,29),(8,30,78,42),(9,38,90,18),(10,19,91,39),(11,40,92,20),(12,21,93,33),(13,34,94,22),(14,23,95,35),(15,36,96,24),(16,17,89,37),(49,81,63,69),(50,70,64,82),(51,83,57,71),(52,72,58,84),(53,85,59,65),(54,66,60,86),(55,87,61,67),(56,68,62,88)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)]])

C3xC4:C8 is a maximal subgroup of
C12.53D8  C12.39SD16  C4.Dic12  C12.47D8  D12:2C8  Dic6:2C8  C4.D24  C12.2D8  C42.27D6  Dic6.3Q8  Dic6:C8  C42.198D6  C42.200D6  D12:C8  C42.202D6  D6:3M4(2)  C12:M4(2)  C12:2M4(2)  C42.30D6  C42.31D6  C12:SD16  D12:3Q8  C4:D24  D12.19D4  C42.36D6  D12:4Q8  D12.3Q8  Dic6:8D4  C4:Dic12  Dic6:3Q8  Dic6:4Q8  D4xC24  Q8xC24

60 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F4G4H6A···6F8A···8H12A···12H12I···12P24A···24P
order122233444444446···68···812···1212···1224···24
size111111111122221···12···21···12···22···2

60 irreducible representations

dim1111111111222222
type++++-
imageC1C2C2C3C4C6C6C8C12C24D4Q8M4(2)C3xD4C3xQ8C3xM4(2)
kernelC3xC4:C8C4xC12C2xC24C4:C8C2xC12C42C2xC8C12C2xC4C4C12C12C6C4C4C2
# reps11224248816112224

Matrix representation of C3xC4:C8 in GL3(F73) generated by

100
0640
0064
,
7200
0072
010
,
5100
0368
0837
G:=sub<GL(3,GF(73))| [1,0,0,0,64,0,0,0,64],[72,0,0,0,0,1,0,72,0],[51,0,0,0,36,8,0,8,37] >;

C3xC4:C8 in GAP, Magma, Sage, TeX

C_3\times C_4\rtimes C_8
% in TeX

G:=Group("C3xC4:C8");
// GroupNames label

G:=SmallGroup(96,55);
// by ID

G=gap.SmallGroup(96,55);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-2,144,169,79,88]);
// Polycyclic

G:=Group<a,b,c|a^3=b^4=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C3xC4:C8 in TeX

׿
x
:
Z
F
o
wr
Q
<