direct product, cyclic, abelian, monomial
Aliases: C108, also denoted Z108, SmallGroup(108,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C108 |
C1 — C108 |
C1 — C108 |
Generators and relations for C108
G = < a | a108=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
G:=sub<Sym(108)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)]])
C108 is a maximal subgroup of
C27⋊C8 Dic54 D108 Q8.C54
108 conjugacy classes
class | 1 | 2 | 3A | 3B | 4A | 4B | 6A | 6B | 9A | ··· | 9F | 12A | 12B | 12C | 12D | 18A | ··· | 18F | 27A | ··· | 27R | 36A | ··· | 36L | 54A | ··· | 54R | 108A | ··· | 108AJ |
order | 1 | 2 | 3 | 3 | 4 | 4 | 6 | 6 | 9 | ··· | 9 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 27 | ··· | 27 | 36 | ··· | 36 | 54 | ··· | 54 | 108 | ··· | 108 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
108 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||||||||
image | C1 | C2 | C3 | C4 | C6 | C9 | C12 | C18 | C27 | C36 | C54 | C108 |
kernel | C108 | C54 | C36 | C27 | C18 | C12 | C9 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 6 | 4 | 6 | 18 | 12 | 18 | 36 |
Matrix representation of C108 ►in GL2(𝔽109) generated by
101 | 0 |
0 | 97 |
G:=sub<GL(2,GF(109))| [101,0,0,97] >;
C108 in GAP, Magma, Sage, TeX
C_{108}
% in TeX
G:=Group("C108");
// GroupNames label
G:=SmallGroup(108,2);
// by ID
G=gap.SmallGroup(108,2);
# by ID
G:=PCGroup([5,-2,-3,-2,-3,-3,30,66,78]);
// Polycyclic
G:=Group<a|a^108=1>;
// generators/relations
Export