Copied to
clipboard

G = C3xC36order 108 = 22·33

Abelian group of type [3,36]

direct product, abelian, monomial, 3-elementary

Aliases: C3xC36, SmallGroup(108,12)

Series: Derived Chief Lower central Upper central

C1 — C3xC36
C1C3C6C3xC6C3xC18 — C3xC36
C1 — C3xC36
C1 — C3xC36

Generators and relations for C3xC36
 G = < a,b | a3=b36=1, ab=ba >

Subgroups: 30, all normal (12 characteristic)
Quotients: C1, C2, C3, C4, C6, C9, C32, C12, C18, C3xC6, C3xC9, C36, C3xC12, C3xC18, C3xC36

Smallest permutation representation of C3xC36
Regular action on 108 points
Generators in S108
(1 108 39)(2 73 40)(3 74 41)(4 75 42)(5 76 43)(6 77 44)(7 78 45)(8 79 46)(9 80 47)(10 81 48)(11 82 49)(12 83 50)(13 84 51)(14 85 52)(15 86 53)(16 87 54)(17 88 55)(18 89 56)(19 90 57)(20 91 58)(21 92 59)(22 93 60)(23 94 61)(24 95 62)(25 96 63)(26 97 64)(27 98 65)(28 99 66)(29 100 67)(30 101 68)(31 102 69)(32 103 70)(33 104 71)(34 105 72)(35 106 37)(36 107 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)

G:=sub<Sym(108)| (1,108,39)(2,73,40)(3,74,41)(4,75,42)(5,76,43)(6,77,44)(7,78,45)(8,79,46)(9,80,47)(10,81,48)(11,82,49)(12,83,50)(13,84,51)(14,85,52)(15,86,53)(16,87,54)(17,88,55)(18,89,56)(19,90,57)(20,91,58)(21,92,59)(22,93,60)(23,94,61)(24,95,62)(25,96,63)(26,97,64)(27,98,65)(28,99,66)(29,100,67)(30,101,68)(31,102,69)(32,103,70)(33,104,71)(34,105,72)(35,106,37)(36,107,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)>;

G:=Group( (1,108,39)(2,73,40)(3,74,41)(4,75,42)(5,76,43)(6,77,44)(7,78,45)(8,79,46)(9,80,47)(10,81,48)(11,82,49)(12,83,50)(13,84,51)(14,85,52)(15,86,53)(16,87,54)(17,88,55)(18,89,56)(19,90,57)(20,91,58)(21,92,59)(22,93,60)(23,94,61)(24,95,62)(25,96,63)(26,97,64)(27,98,65)(28,99,66)(29,100,67)(30,101,68)(31,102,69)(32,103,70)(33,104,71)(34,105,72)(35,106,37)(36,107,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108) );

G=PermutationGroup([[(1,108,39),(2,73,40),(3,74,41),(4,75,42),(5,76,43),(6,77,44),(7,78,45),(8,79,46),(9,80,47),(10,81,48),(11,82,49),(12,83,50),(13,84,51),(14,85,52),(15,86,53),(16,87,54),(17,88,55),(18,89,56),(19,90,57),(20,91,58),(21,92,59),(22,93,60),(23,94,61),(24,95,62),(25,96,63),(26,97,64),(27,98,65),(28,99,66),(29,100,67),(30,101,68),(31,102,69),(32,103,70),(33,104,71),(34,105,72),(35,106,37),(36,107,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)]])

C3xC36 is a maximal subgroup of   C36.S3  C12.D9  C36:S3

108 conjugacy classes

class 1  2 3A···3H4A4B6A···6H9A···9R12A···12P18A···18R36A···36AJ
order123···3446···69···912···1218···1836···36
size111···1111···11···11···11···11···1

108 irreducible representations

dim111111111111
type++
imageC1C2C3C3C4C6C6C9C12C12C18C36
kernelC3xC36C3xC18C36C3xC12C3xC9C18C3xC6C12C9C32C6C3
# reps1162262181241836

Matrix representation of C3xC36 in GL2(F37) generated by

100
01
,
30
020
G:=sub<GL(2,GF(37))| [10,0,0,1],[3,0,0,20] >;

C3xC36 in GAP, Magma, Sage, TeX

C_3\times C_{36}
% in TeX

G:=Group("C3xC36");
// GroupNames label

G:=SmallGroup(108,12);
// by ID

G=gap.SmallGroup(108,12);
# by ID

G:=PCGroup([5,-2,-3,-3,-2,-3,90,186]);
// Polycyclic

G:=Group<a,b|a^3=b^36=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C3xC36 in TeX

׿
x
:
Z
F
o
wr
Q
<