direct product, abelian, monomial, 3-elementary
Aliases: C3×C36, SmallGroup(108,12)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3×C36 |
C1 — C3×C36 |
C1 — C3×C36 |
Generators and relations for C3×C36
G = < a,b | a3=b36=1, ab=ba >
(1 108 39)(2 73 40)(3 74 41)(4 75 42)(5 76 43)(6 77 44)(7 78 45)(8 79 46)(9 80 47)(10 81 48)(11 82 49)(12 83 50)(13 84 51)(14 85 52)(15 86 53)(16 87 54)(17 88 55)(18 89 56)(19 90 57)(20 91 58)(21 92 59)(22 93 60)(23 94 61)(24 95 62)(25 96 63)(26 97 64)(27 98 65)(28 99 66)(29 100 67)(30 101 68)(31 102 69)(32 103 70)(33 104 71)(34 105 72)(35 106 37)(36 107 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
G:=sub<Sym(108)| (1,108,39)(2,73,40)(3,74,41)(4,75,42)(5,76,43)(6,77,44)(7,78,45)(8,79,46)(9,80,47)(10,81,48)(11,82,49)(12,83,50)(13,84,51)(14,85,52)(15,86,53)(16,87,54)(17,88,55)(18,89,56)(19,90,57)(20,91,58)(21,92,59)(22,93,60)(23,94,61)(24,95,62)(25,96,63)(26,97,64)(27,98,65)(28,99,66)(29,100,67)(30,101,68)(31,102,69)(32,103,70)(33,104,71)(34,105,72)(35,106,37)(36,107,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)>;
G:=Group( (1,108,39)(2,73,40)(3,74,41)(4,75,42)(5,76,43)(6,77,44)(7,78,45)(8,79,46)(9,80,47)(10,81,48)(11,82,49)(12,83,50)(13,84,51)(14,85,52)(15,86,53)(16,87,54)(17,88,55)(18,89,56)(19,90,57)(20,91,58)(21,92,59)(22,93,60)(23,94,61)(24,95,62)(25,96,63)(26,97,64)(27,98,65)(28,99,66)(29,100,67)(30,101,68)(31,102,69)(32,103,70)(33,104,71)(34,105,72)(35,106,37)(36,107,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108) );
G=PermutationGroup([[(1,108,39),(2,73,40),(3,74,41),(4,75,42),(5,76,43),(6,77,44),(7,78,45),(8,79,46),(9,80,47),(10,81,48),(11,82,49),(12,83,50),(13,84,51),(14,85,52),(15,86,53),(16,87,54),(17,88,55),(18,89,56),(19,90,57),(20,91,58),(21,92,59),(22,93,60),(23,94,61),(24,95,62),(25,96,63),(26,97,64),(27,98,65),(28,99,66),(29,100,67),(30,101,68),(31,102,69),(32,103,70),(33,104,71),(34,105,72),(35,106,37),(36,107,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)]])
C3×C36 is a maximal subgroup of
C36.S3 C12.D9 C36⋊S3
108 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 4A | 4B | 6A | ··· | 6H | 9A | ··· | 9R | 12A | ··· | 12P | 18A | ··· | 18R | 36A | ··· | 36AJ |
order | 1 | 2 | 3 | ··· | 3 | 4 | 4 | 6 | ··· | 6 | 9 | ··· | 9 | 12 | ··· | 12 | 18 | ··· | 18 | 36 | ··· | 36 |
size | 1 | 1 | 1 | ··· | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
108 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||||||||
image | C1 | C2 | C3 | C3 | C4 | C6 | C6 | C9 | C12 | C12 | C18 | C36 |
kernel | C3×C36 | C3×C18 | C36 | C3×C12 | C3×C9 | C18 | C3×C6 | C12 | C9 | C32 | C6 | C3 |
# reps | 1 | 1 | 6 | 2 | 2 | 6 | 2 | 18 | 12 | 4 | 18 | 36 |
Matrix representation of C3×C36 ►in GL2(𝔽37) generated by
10 | 0 |
0 | 1 |
3 | 0 |
0 | 20 |
G:=sub<GL(2,GF(37))| [10,0,0,1],[3,0,0,20] >;
C3×C36 in GAP, Magma, Sage, TeX
C_3\times C_{36}
% in TeX
G:=Group("C3xC36");
// GroupNames label
G:=SmallGroup(108,12);
// by ID
G=gap.SmallGroup(108,12);
# by ID
G:=PCGroup([5,-2,-3,-3,-2,-3,90,186]);
// Polycyclic
G:=Group<a,b|a^3=b^36=1,a*b=b*a>;
// generators/relations
Export