Extensions 1→N→G→Q→1 with N=C20 and Q=S3

Direct product G=N×Q with N=C20 and Q=S3
dρLabelID
S3×C20602S3xC20120,22

Semidirect products G=N:Q with N=C20 and Q=S3
extensionφ:Q→Aut NdρLabelID
C201S3 = D60φ: S3/C3C2 ⊆ Aut C20602+C20:1S3120,28
C202S3 = C4×D15φ: S3/C3C2 ⊆ Aut C20602C20:2S3120,27
C203S3 = C5×D12φ: S3/C3C2 ⊆ Aut C20602C20:3S3120,23

Non-split extensions G=N.Q with N=C20 and Q=S3
extensionφ:Q→Aut NdρLabelID
C20.1S3 = Dic30φ: S3/C3C2 ⊆ Aut C201202-C20.1S3120,26
C20.2S3 = C153C8φ: S3/C3C2 ⊆ Aut C201202C20.2S3120,3
C20.3S3 = C5×Dic6φ: S3/C3C2 ⊆ Aut C201202C20.3S3120,21
C20.4S3 = C5×C3⋊C8central extension (φ=1)1202C20.4S3120,1

׿
×
𝔽