direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C4×D15, C60⋊2C2, C20⋊2S3, C12⋊2D5, C4○Dic15, C2.1D30, C10.9D6, C6.9D10, D30.2C2, Dic15⋊5C2, C30.9C22, C5⋊3(C4×S3), C3⋊2(C4×D5), C15⋊7(C2×C4), SmallGroup(120,27)
Series: Derived ►Chief ►Lower central ►Upper central
C15 — C4×D15 |
Generators and relations for C4×D15
G = < a,b,c | a4=b15=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 54 17 31)(2 55 18 32)(3 56 19 33)(4 57 20 34)(5 58 21 35)(6 59 22 36)(7 60 23 37)(8 46 24 38)(9 47 25 39)(10 48 26 40)(11 49 27 41)(12 50 28 42)(13 51 29 43)(14 52 30 44)(15 53 16 45)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 16)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 24)(9 23)(10 22)(11 21)(12 20)(13 19)(14 18)(15 17)(31 53)(32 52)(33 51)(34 50)(35 49)(36 48)(37 47)(38 46)(39 60)(40 59)(41 58)(42 57)(43 56)(44 55)(45 54)
G:=sub<Sym(60)| (1,54,17,31)(2,55,18,32)(3,56,19,33)(4,57,20,34)(5,58,21,35)(6,59,22,36)(7,60,23,37)(8,46,24,38)(9,47,25,39)(10,48,26,40)(11,49,27,41)(12,50,28,42)(13,51,29,43)(14,52,30,44)(15,53,16,45), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,16)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(31,53)(32,52)(33,51)(34,50)(35,49)(36,48)(37,47)(38,46)(39,60)(40,59)(41,58)(42,57)(43,56)(44,55)(45,54)>;
G:=Group( (1,54,17,31)(2,55,18,32)(3,56,19,33)(4,57,20,34)(5,58,21,35)(6,59,22,36)(7,60,23,37)(8,46,24,38)(9,47,25,39)(10,48,26,40)(11,49,27,41)(12,50,28,42)(13,51,29,43)(14,52,30,44)(15,53,16,45), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,16)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(31,53)(32,52)(33,51)(34,50)(35,49)(36,48)(37,47)(38,46)(39,60)(40,59)(41,58)(42,57)(43,56)(44,55)(45,54) );
G=PermutationGroup([[(1,54,17,31),(2,55,18,32),(3,56,19,33),(4,57,20,34),(5,58,21,35),(6,59,22,36),(7,60,23,37),(8,46,24,38),(9,47,25,39),(10,48,26,40),(11,49,27,41),(12,50,28,42),(13,51,29,43),(14,52,30,44),(15,53,16,45)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,16),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,24),(9,23),(10,22),(11,21),(12,20),(13,19),(14,18),(15,17),(31,53),(32,52),(33,51),(34,50),(35,49),(36,48),(37,47),(38,46),(39,60),(40,59),(41,58),(42,57),(43,56),(44,55),(45,54)]])
C4×D15 is a maximal subgroup of
D15⋊2C8 D30.5C4 C40⋊S3 D20⋊S3 D12⋊D5 D15⋊Q8 D6.D10 C4×S3×D5 C20⋊D6 D60⋊11C2 D4⋊2D15 Q8⋊3D15 C6.D30 C20.6S4
C4×D15 is a maximal quotient of
C40⋊S3 C30.4Q8 D30⋊3C4 C6.D30
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 5A | 5B | 6 | 10A | 10B | 12A | 12B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 30A | 30B | 30C | 30D | 60A | ··· | 60H |
order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 10 | 10 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 15 | 15 | 2 | 1 | 1 | 15 | 15 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C4 | S3 | D5 | D6 | D10 | C4×S3 | D15 | C4×D5 | D30 | C4×D15 |
kernel | C4×D15 | Dic15 | C60 | D30 | D15 | C20 | C12 | C10 | C6 | C5 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 4 | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 4 | 8 |
Matrix representation of C4×D15 ►in GL2(𝔽29) generated by
17 | 0 |
0 | 17 |
28 | 21 |
21 | 22 |
22 | 23 |
8 | 7 |
G:=sub<GL(2,GF(29))| [17,0,0,17],[28,21,21,22],[22,8,23,7] >;
C4×D15 in GAP, Magma, Sage, TeX
C_4\times D_{15}
% in TeX
G:=Group("C4xD15");
// GroupNames label
G:=SmallGroup(120,27);
// by ID
G=gap.SmallGroup(120,27);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-5,26,323,2404]);
// Polycyclic
G:=Group<a,b,c|a^4=b^15=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export