metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C15⋊3C8, C6.Dic5, C60.2C2, C30.3C4, C20.2S3, C12.2D5, C4.2D15, C2.Dic15, C10.2Dic3, C3⋊(C5⋊2C8), C5⋊2(C3⋊C8), SmallGroup(120,3)
Series: Derived ►Chief ►Lower central ►Upper central
C15 — C15⋊3C8 |
Generators and relations for C15⋊3C8
G = < a,b | a15=b8=1, bab-1=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 114 46 76 17 91 43 62)(2 113 47 90 18 105 44 61)(3 112 48 89 19 104 45 75)(4 111 49 88 20 103 31 74)(5 110 50 87 21 102 32 73)(6 109 51 86 22 101 33 72)(7 108 52 85 23 100 34 71)(8 107 53 84 24 99 35 70)(9 106 54 83 25 98 36 69)(10 120 55 82 26 97 37 68)(11 119 56 81 27 96 38 67)(12 118 57 80 28 95 39 66)(13 117 58 79 29 94 40 65)(14 116 59 78 30 93 41 64)(15 115 60 77 16 92 42 63)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,114,46,76,17,91,43,62)(2,113,47,90,18,105,44,61)(3,112,48,89,19,104,45,75)(4,111,49,88,20,103,31,74)(5,110,50,87,21,102,32,73)(6,109,51,86,22,101,33,72)(7,108,52,85,23,100,34,71)(8,107,53,84,24,99,35,70)(9,106,54,83,25,98,36,69)(10,120,55,82,26,97,37,68)(11,119,56,81,27,96,38,67)(12,118,57,80,28,95,39,66)(13,117,58,79,29,94,40,65)(14,116,59,78,30,93,41,64)(15,115,60,77,16,92,42,63)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,114,46,76,17,91,43,62)(2,113,47,90,18,105,44,61)(3,112,48,89,19,104,45,75)(4,111,49,88,20,103,31,74)(5,110,50,87,21,102,32,73)(6,109,51,86,22,101,33,72)(7,108,52,85,23,100,34,71)(8,107,53,84,24,99,35,70)(9,106,54,83,25,98,36,69)(10,120,55,82,26,97,37,68)(11,119,56,81,27,96,38,67)(12,118,57,80,28,95,39,66)(13,117,58,79,29,94,40,65)(14,116,59,78,30,93,41,64)(15,115,60,77,16,92,42,63) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,114,46,76,17,91,43,62),(2,113,47,90,18,105,44,61),(3,112,48,89,19,104,45,75),(4,111,49,88,20,103,31,74),(5,110,50,87,21,102,32,73),(6,109,51,86,22,101,33,72),(7,108,52,85,23,100,34,71),(8,107,53,84,24,99,35,70),(9,106,54,83,25,98,36,69),(10,120,55,82,26,97,37,68),(11,119,56,81,27,96,38,67),(12,118,57,80,28,95,39,66),(13,117,58,79,29,94,40,65),(14,116,59,78,30,93,41,64),(15,115,60,77,16,92,42,63)]])
C15⋊3C8 is a maximal subgroup of
D5×C3⋊C8 S3×C5⋊2C8 C20.32D6 D6.Dic5 C15⋊D8 C30.D4 C20.D6 C15⋊Q16 C8×D15 C40⋊S3 C60.7C4 D4⋊D15 D4.D15 Q8⋊2D15 C15⋊7Q16 C45⋊3C8 C60.S3 C20.S4 C5⋊2U2(𝔽3)
C15⋊3C8 is a maximal quotient of
C15⋊3C16 C45⋊3C8 C60.S3 C20.S4
36 conjugacy classes
class | 1 | 2 | 3 | 4A | 4B | 5A | 5B | 6 | 8A | 8B | 8C | 8D | 10A | 10B | 12A | 12B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 30A | 30B | 30C | 30D | 60A | ··· | 60H |
order | 1 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | 8 | 8 | 8 | 8 | 10 | 10 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 15 | 15 | 15 | 15 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | - | + | - | |||||
image | C1 | C2 | C4 | C8 | S3 | D5 | Dic3 | Dic5 | C3⋊C8 | D15 | C5⋊2C8 | Dic15 | C15⋊3C8 |
kernel | C15⋊3C8 | C60 | C30 | C15 | C20 | C12 | C10 | C6 | C5 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 4 | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 4 | 8 |
Matrix representation of C15⋊3C8 ►in GL2(𝔽29) generated by
1 | 17 |
28 | 13 |
0 | 17 |
1 | 0 |
G:=sub<GL(2,GF(29))| [1,28,17,13],[0,1,17,0] >;
C15⋊3C8 in GAP, Magma, Sage, TeX
C_{15}\rtimes_3C_8
% in TeX
G:=Group("C15:3C8");
// GroupNames label
G:=SmallGroup(120,3);
// by ID
G=gap.SmallGroup(120,3);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-5,10,26,323,2404]);
// Polycyclic
G:=Group<a,b|a^15=b^8=1,b*a*b^-1=a^-1>;
// generators/relations
Export