Extensions 1→N→G→Q→1 with N=C3×C6 and Q=C6

Direct product G=N×Q with N=C3×C6 and Q=C6
dρLabelID
C3×C62108C3xC6^2108,45

Semidirect products G=N:Q with N=C3×C6 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C3×C6)⋊C6 = C2×C32⋊C6φ: C6/C1C6 ⊆ Aut C3×C6186+(C3xC6):C6108,25
(C3×C6)⋊2C6 = C22×He3φ: C6/C2C3 ⊆ Aut C3×C636(C3xC6):2C6108,30
(C3×C6)⋊3C6 = S3×C3×C6φ: C6/C3C2 ⊆ Aut C3×C636(C3xC6):3C6108,42
(C3×C6)⋊4C6 = C6×C3⋊S3φ: C6/C3C2 ⊆ Aut C3×C636(C3xC6):4C6108,43

Non-split extensions G=N.Q with N=C3×C6 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C3×C6).C6 = C32⋊C12φ: C6/C1C6 ⊆ Aut C3×C6366-(C3xC6).C6108,8
(C3×C6).2C6 = C4×He3φ: C6/C2C3 ⊆ Aut C3×C6363(C3xC6).2C6108,13
(C3×C6).3C6 = C4×3- 1+2φ: C6/C2C3 ⊆ Aut C3×C6363(C3xC6).3C6108,14
(C3×C6).4C6 = C22×3- 1+2φ: C6/C2C3 ⊆ Aut C3×C636(C3xC6).4C6108,31
(C3×C6).5C6 = C9×Dic3φ: C6/C3C2 ⊆ Aut C3×C6362(C3xC6).5C6108,7
(C3×C6).6C6 = S3×C18φ: C6/C3C2 ⊆ Aut C3×C6362(C3xC6).6C6108,24
(C3×C6).7C6 = C32×Dic3φ: C6/C3C2 ⊆ Aut C3×C636(C3xC6).7C6108,32
(C3×C6).8C6 = C3×C3⋊Dic3φ: C6/C3C2 ⊆ Aut C3×C636(C3xC6).8C6108,33

׿
×
𝔽