Extensions 1→N→G→Q→1 with N=C2×C28 and Q=C2

Direct product G=N×Q with N=C2×C28 and Q=C2
dρLabelID
C22×C28112C2^2xC28112,37

Semidirect products G=N:Q with N=C2×C28 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C28)⋊1C2 = D14⋊C4φ: C2/C1C2 ⊆ Aut C2×C2856(C2xC28):1C2112,13
(C2×C28)⋊2C2 = C7×C22⋊C4φ: C2/C1C2 ⊆ Aut C2×C2856(C2xC28):2C2112,20
(C2×C28)⋊3C2 = C2×D28φ: C2/C1C2 ⊆ Aut C2×C2856(C2xC28):3C2112,29
(C2×C28)⋊4C2 = C4○D28φ: C2/C1C2 ⊆ Aut C2×C28562(C2xC28):4C2112,30
(C2×C28)⋊5C2 = C2×C4×D7φ: C2/C1C2 ⊆ Aut C2×C2856(C2xC28):5C2112,28
(C2×C28)⋊6C2 = D4×C14φ: C2/C1C2 ⊆ Aut C2×C2856(C2xC28):6C2112,38
(C2×C28)⋊7C2 = C7×C4○D4φ: C2/C1C2 ⊆ Aut C2×C28562(C2xC28):7C2112,40

Non-split extensions G=N.Q with N=C2×C28 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C28).1C2 = Dic7⋊C4φ: C2/C1C2 ⊆ Aut C2×C28112(C2xC28).1C2112,11
(C2×C28).2C2 = C7×C4⋊C4φ: C2/C1C2 ⊆ Aut C2×C28112(C2xC28).2C2112,21
(C2×C28).3C2 = C4⋊Dic7φ: C2/C1C2 ⊆ Aut C2×C28112(C2xC28).3C2112,12
(C2×C28).4C2 = C2×Dic14φ: C2/C1C2 ⊆ Aut C2×C28112(C2xC28).4C2112,27
(C2×C28).5C2 = C4.Dic7φ: C2/C1C2 ⊆ Aut C2×C28562(C2xC28).5C2112,9
(C2×C28).6C2 = C2×C7⋊C8φ: C2/C1C2 ⊆ Aut C2×C28112(C2xC28).6C2112,8
(C2×C28).7C2 = C4×Dic7φ: C2/C1C2 ⊆ Aut C2×C28112(C2xC28).7C2112,10
(C2×C28).8C2 = C7×M4(2)φ: C2/C1C2 ⊆ Aut C2×C28562(C2xC28).8C2112,23
(C2×C28).9C2 = Q8×C14φ: C2/C1C2 ⊆ Aut C2×C28112(C2xC28).9C2112,39

׿
×
𝔽