p-group, metacyclic, nilpotent (class 6), monomial
Aliases: D64, C64⋊1C2, D32⋊1C2, C2.3D32, C16.5D4, C4.1D16, C8.10D8, C32.2C22, 2-Sylow(PGL(2,191)), sometimes denoted D128 or Dih64 or Dih128, SmallGroup(128,161)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C4 — C4 — C4 — C4 — C4 — C4 — C4 — C4 — C8 — C8 — C8 — C8 — C16 — C16 — C32 — D64 |
Generators and relations for D64
G = < a,b | a64=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(2 64)(3 63)(4 62)(5 61)(6 60)(7 59)(8 58)(9 57)(10 56)(11 55)(12 54)(13 53)(14 52)(15 51)(16 50)(17 49)(18 48)(19 47)(20 46)(21 45)(22 44)(23 43)(24 42)(25 41)(26 40)(27 39)(28 38)(29 37)(30 36)(31 35)(32 34)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,64)(3,63)(4,62)(5,61)(6,60)(7,59)(8,58)(9,57)(10,56)(11,55)(12,54)(13,53)(14,52)(15,51)(16,50)(17,49)(18,48)(19,47)(20,46)(21,45)(22,44)(23,43)(24,42)(25,41)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,64)(3,63)(4,62)(5,61)(6,60)(7,59)(8,58)(9,57)(10,56)(11,55)(12,54)(13,53)(14,52)(15,51)(16,50)(17,49)(18,48)(19,47)(20,46)(21,45)(22,44)(23,43)(24,42)(25,41)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(2,64),(3,63),(4,62),(5,61),(6,60),(7,59),(8,58),(9,57),(10,56),(11,55),(12,54),(13,53),(14,52),(15,51),(16,50),(17,49),(18,48),(19,47),(20,46),(21,45),(22,44),(23,43),(24,42),(25,41),(26,40),(27,39),(28,38),(29,37),(30,36),(31,35),(32,34)]])
35 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 8A | 8B | 16A | 16B | 16C | 16D | 32A | ··· | 32H | 64A | ··· | 64P |
order | 1 | 2 | 2 | 2 | 4 | 8 | 8 | 16 | 16 | 16 | 16 | 32 | ··· | 32 | 64 | ··· | 64 |
size | 1 | 1 | 32 | 32 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
35 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | D4 | D8 | D16 | D32 | D64 |
kernel | D64 | C64 | D32 | C16 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 4 | 8 | 16 |
Matrix representation of D64 ►in GL2(𝔽193) generated by
45 | 35 |
79 | 10 |
1 | 0 |
192 | 192 |
G:=sub<GL(2,GF(193))| [45,79,35,10],[1,192,0,192] >;
D64 in GAP, Magma, Sage, TeX
D_{64}
% in TeX
G:=Group("D64");
// GroupNames label
G:=SmallGroup(128,161);
// by ID
G=gap.SmallGroup(128,161);
# by ID
G:=PCGroup([7,-2,2,-2,-2,-2,-2,-2,85,254,135,142,675,346,192,1684,851,242,4037,2028,124]);
// Polycyclic
G:=Group<a,b|a^64=b^2=1,b*a*b=a^-1>;
// generators/relations
Export