p-group, metacyclic, nilpotent (class 6), monomial
Aliases: SD128, C64⋊2C2, D32.C2, Q64⋊1C2, C4.2D16, C16.6D4, C8.11D8, C2.4D32, C32.3C22, 2-Sylow(GL(2,31)), also known as the quasi-dihedral group QD128, SmallGroup(128,162)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C4 — C4 — C4 — C4 — C4 — C4 — C4 — C4 — C8 — C8 — C8 — C8 — C16 — C16 — C32 — SD128 |
Generators and relations for SD128
G = < a,b | a64=b2=1, bab=a31 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(2 32)(3 63)(4 30)(5 61)(6 28)(7 59)(8 26)(9 57)(10 24)(11 55)(12 22)(13 53)(14 20)(15 51)(16 18)(17 49)(19 47)(21 45)(23 43)(25 41)(27 39)(29 37)(31 35)(34 64)(36 62)(38 60)(40 58)(42 56)(44 54)(46 52)(48 50)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,32)(3,63)(4,30)(5,61)(6,28)(7,59)(8,26)(9,57)(10,24)(11,55)(12,22)(13,53)(14,20)(15,51)(16,18)(17,49)(19,47)(21,45)(23,43)(25,41)(27,39)(29,37)(31,35)(34,64)(36,62)(38,60)(40,58)(42,56)(44,54)(46,52)(48,50)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,32)(3,63)(4,30)(5,61)(6,28)(7,59)(8,26)(9,57)(10,24)(11,55)(12,22)(13,53)(14,20)(15,51)(16,18)(17,49)(19,47)(21,45)(23,43)(25,41)(27,39)(29,37)(31,35)(34,64)(36,62)(38,60)(40,58)(42,56)(44,54)(46,52)(48,50) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(2,32),(3,63),(4,30),(5,61),(6,28),(7,59),(8,26),(9,57),(10,24),(11,55),(12,22),(13,53),(14,20),(15,51),(16,18),(17,49),(19,47),(21,45),(23,43),(25,41),(27,39),(29,37),(31,35),(34,64),(36,62),(38,60),(40,58),(42,56),(44,54),(46,52),(48,50)]])
35 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 8A | 8B | 16A | 16B | 16C | 16D | 32A | ··· | 32H | 64A | ··· | 64P |
order | 1 | 2 | 2 | 4 | 4 | 8 | 8 | 16 | 16 | 16 | 16 | 32 | ··· | 32 | 64 | ··· | 64 |
size | 1 | 1 | 32 | 2 | 32 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
35 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | D4 | D8 | D16 | D32 | SD128 |
kernel | SD128 | C64 | D32 | Q64 | C16 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 8 | 16 |
Matrix representation of SD128 ►in GL2(𝔽31) generated by
12 | 30 |
30 | 0 |
1 | 12 |
0 | 30 |
G:=sub<GL(2,GF(31))| [12,30,30,0],[1,0,12,30] >;
SD128 in GAP, Magma, Sage, TeX
{\rm SD}_{128}
% in TeX
G:=Group("SD128");
// GroupNames label
G:=SmallGroup(128,162);
// by ID
G=gap.SmallGroup(128,162);
# by ID
G:=PCGroup([7,-2,2,-2,-2,-2,-2,-2,448,85,254,135,142,675,346,192,1684,851,242,4037,2028,124]);
// Polycyclic
G:=Group<a,b|a^64=b^2=1,b*a*b=a^31>;
// generators/relations
Export