Extensions 1→N→G→Q→1 with N=Dic3 and Q=D6

Direct product G=N×Q with N=Dic3 and Q=D6
dρLabelID
C2×S3×Dic348C2xS3xDic3144,146

Semidirect products G=N:Q with N=Dic3 and Q=D6
extensionφ:Q→Out NdρLabelID
Dic31D6 = S3×C3⋊D4φ: D6/S3C2 ⊆ Out Dic3244Dic3:1D6144,153
Dic32D6 = Dic3⋊D6φ: D6/S3C2 ⊆ Out Dic3124+Dic3:2D6144,154
Dic33D6 = S3×D12φ: D6/C6C2 ⊆ Out Dic3244+Dic3:3D6144,144
Dic34D6 = C2×C3⋊D12φ: D6/C6C2 ⊆ Out Dic324Dic3:4D6144,151
Dic35D6 = C4×S32φ: trivial image244Dic3:5D6144,143
Dic36D6 = C2×C6.D6φ: trivial image24Dic3:6D6144,149

Non-split extensions G=N.Q with N=Dic3 and Q=D6
extensionφ:Q→Out NdρLabelID
Dic3.1D6 = D12⋊S3φ: D6/S3C2 ⊆ Out Dic3244Dic3.1D6144,139
Dic3.2D6 = Dic3.D6φ: D6/S3C2 ⊆ Out Dic3244Dic3.2D6144,140
Dic3.3D6 = D6.3D6φ: D6/S3C2 ⊆ Out Dic3244Dic3.3D6144,147
Dic3.4D6 = D6.4D6φ: D6/S3C2 ⊆ Out Dic3244-Dic3.4D6144,148
Dic3.5D6 = S3×Dic6φ: D6/C6C2 ⊆ Out Dic3484-Dic3.5D6144,137
Dic3.6D6 = D6.D6φ: D6/C6C2 ⊆ Out Dic3244Dic3.6D6144,141
Dic3.7D6 = C2×C322Q8φ: D6/C6C2 ⊆ Out Dic348Dic3.7D6144,152
Dic3.8D6 = D125S3φ: trivial image484-Dic3.8D6144,138
Dic3.9D6 = D6.6D6φ: trivial image244+Dic3.9D6144,142

׿
×
𝔽