Extensions 1→N→G→Q→1 with N=D6 and Q=D6

Direct product G=N×Q with N=D6 and Q=D6
dρLabelID
C22×S3224C2^2xS3^2144,192

Semidirect products G=N:Q with N=D6 and Q=D6
extensionφ:Q→Out NdρLabelID
D61D6 = S3×D12φ: D6/S3C2 ⊆ Out D6244+D6:1D6144,144
D62D6 = D6⋊D6φ: D6/S3C2 ⊆ Out D6244D6:2D6144,145
D63D6 = Dic3⋊D6φ: D6/S3C2 ⊆ Out D6124+D6:3D6144,154
D64D6 = C2×D6⋊S3φ: D6/C6C2 ⊆ Out D648D6:4D6144,150
D65D6 = C2×C3⋊D12φ: D6/C6C2 ⊆ Out D624D6:5D6144,151
D66D6 = S3×C3⋊D4φ: D6/C6C2 ⊆ Out D6244D6:6D6144,153

Non-split extensions G=N.Q with N=D6 and Q=D6
extensionφ:Q→Out NdρLabelID
D6.1D6 = D125S3φ: D6/S3C2 ⊆ Out D6484-D6.1D6144,138
D6.2D6 = D12⋊S3φ: D6/S3C2 ⊆ Out D6244D6.2D6144,139
D6.3D6 = D6.3D6φ: D6/S3C2 ⊆ Out D6244D6.3D6144,147
D6.4D6 = D6.4D6φ: D6/S3C2 ⊆ Out D6244-D6.4D6144,148
D6.5D6 = D6.D6φ: D6/C6C2 ⊆ Out D6244D6.5D6144,141
D6.6D6 = D6.6D6φ: D6/C6C2 ⊆ Out D6244+D6.6D6144,142
D6.7D6 = S3×Dic6φ: trivial image484-D6.7D6144,137
D6.8D6 = C4×S32φ: trivial image244D6.8D6144,143
D6.9D6 = C2×S3×Dic3φ: trivial image48D6.9D6144,146

׿
×
𝔽