Extensions 1→N→G→Q→1 with N=C3×D12 and Q=C2

Direct product G=N×Q with N=C3×D12 and Q=C2
dρLabelID
C6×D1248C6xD12144,160

Semidirect products G=N:Q with N=C3×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D12)⋊1C2 = C322D8φ: C2/C1C2 ⊆ Out C3×D12484(C3xD12):1C2144,56
(C3×D12)⋊2C2 = C3⋊D24φ: C2/C1C2 ⊆ Out C3×D12244+(C3xD12):2C2144,57
(C3×D12)⋊3C2 = C3×D4⋊S3φ: C2/C1C2 ⊆ Out C3×D12244(C3xD12):3C2144,80
(C3×D12)⋊4C2 = D125S3φ: C2/C1C2 ⊆ Out C3×D12484-(C3xD12):4C2144,138
(C3×D12)⋊5C2 = D12⋊S3φ: C2/C1C2 ⊆ Out C3×D12244(C3xD12):5C2144,139
(C3×D12)⋊6C2 = S3×D12φ: C2/C1C2 ⊆ Out C3×D12244+(C3xD12):6C2144,144
(C3×D12)⋊7C2 = D6⋊D6φ: C2/C1C2 ⊆ Out C3×D12244(C3xD12):7C2144,145
(C3×D12)⋊8C2 = C3×S3×D4φ: C2/C1C2 ⊆ Out C3×D12244(C3xD12):8C2144,162
(C3×D12)⋊9C2 = C3×Q83S3φ: C2/C1C2 ⊆ Out C3×D12484(C3xD12):9C2144,165
(C3×D12)⋊10C2 = C3×D24φ: C2/C1C2 ⊆ Out C3×D12482(C3xD12):10C2144,72
(C3×D12)⋊11C2 = C3×C4○D12φ: trivial image242(C3xD12):11C2144,161

Non-split extensions G=N.Q with N=C3×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D12).1C2 = Dic6⋊S3φ: C2/C1C2 ⊆ Out C3×D12484(C3xD12).1C2144,58
(C3×D12).2C2 = D12.S3φ: C2/C1C2 ⊆ Out C3×D12484-(C3xD12).2C2144,59
(C3×D12).3C2 = C3×Q82S3φ: C2/C1C2 ⊆ Out C3×D12484(C3xD12).3C2144,82
(C3×D12).4C2 = C3×C24⋊C2φ: C2/C1C2 ⊆ Out C3×D12482(C3xD12).4C2144,71

׿
×
𝔽