Extensions 1→N→G→Q→1 with N=C3xD12 and Q=C2

Direct product G=NxQ with N=C3xD12 and Q=C2
dρLabelID
C6xD1248C6xD12144,160

Semidirect products G=N:Q with N=C3xD12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD12):1C2 = C32:2D8φ: C2/C1C2 ⊆ Out C3xD12484(C3xD12):1C2144,56
(C3xD12):2C2 = C3:D24φ: C2/C1C2 ⊆ Out C3xD12244+(C3xD12):2C2144,57
(C3xD12):3C2 = C3xD4:S3φ: C2/C1C2 ⊆ Out C3xD12244(C3xD12):3C2144,80
(C3xD12):4C2 = D12:5S3φ: C2/C1C2 ⊆ Out C3xD12484-(C3xD12):4C2144,138
(C3xD12):5C2 = D12:S3φ: C2/C1C2 ⊆ Out C3xD12244(C3xD12):5C2144,139
(C3xD12):6C2 = S3xD12φ: C2/C1C2 ⊆ Out C3xD12244+(C3xD12):6C2144,144
(C3xD12):7C2 = D6:D6φ: C2/C1C2 ⊆ Out C3xD12244(C3xD12):7C2144,145
(C3xD12):8C2 = C3xS3xD4φ: C2/C1C2 ⊆ Out C3xD12244(C3xD12):8C2144,162
(C3xD12):9C2 = C3xQ8:3S3φ: C2/C1C2 ⊆ Out C3xD12484(C3xD12):9C2144,165
(C3xD12):10C2 = C3xD24φ: C2/C1C2 ⊆ Out C3xD12482(C3xD12):10C2144,72
(C3xD12):11C2 = C3xC4oD12φ: trivial image242(C3xD12):11C2144,161

Non-split extensions G=N.Q with N=C3xD12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD12).1C2 = Dic6:S3φ: C2/C1C2 ⊆ Out C3xD12484(C3xD12).1C2144,58
(C3xD12).2C2 = D12.S3φ: C2/C1C2 ⊆ Out C3xD12484-(C3xD12).2C2144,59
(C3xD12).3C2 = C3xQ8:2S3φ: C2/C1C2 ⊆ Out C3xD12484(C3xD12).3C2144,82
(C3xD12).4C2 = C3xC24:C2φ: C2/C1C2 ⊆ Out C3xD12482(C3xD12).4C2144,71

׿
x
:
Z
F
o
wr
Q
<