Copied to
clipboard

G = 2+ 1+4:6S3order 192 = 26·3

1st semidirect product of 2+ 1+4 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: 2+ 1+4:6S3, (C3xD4):15D4, (C3xQ8):15D4, D4:D6:5C2, C12:3D4:8C2, C3:5(D4:4D4), D4:7(C3:D4), C4oD4.25D6, Q8:8(C3:D4), (C2xD4).82D6, C6.80C22wrC2, C12.217(C2xD4), (C22xC6).24D4, C12.D4:11C2, (C2xD12):15C22, (C2xC12).21C23, (C4xDic3):8C22, Q8:3Dic3:11C2, (C6xD4).107C22, C23.12(C3:D4), C4.Dic3:10C22, (C3x2+ 1+4):1C2, C2.14(C24:4S3), (C2xC6).42(C2xD4), C4.64(C2xC3:D4), (C2xC4).21(C22xS3), C22.14(C2xC3:D4), (C3xC4oD4).19C22, SmallGroup(192,800)

Series: Derived Chief Lower central Upper central

C1C2xC12 — 2+ 1+4:6S3
C1C3C6C2xC6C2xC12C2xD12D4:D6 — 2+ 1+4:6S3
C3C6C2xC12 — 2+ 1+4:6S3
C1C2C2xC42+ 1+4

Generators and relations for 2+ 1+4:6S3
 G = < a,b,c,d,e,f | a4=b2=d2=e3=f2=1, c2=a2, bab=faf=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, fbf=ab, dcd=fcf=a2c, ce=ec, de=ed, fdf=cd, fef=e-1 >

Subgroups: 520 in 168 conjugacy classes, 43 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, C23, C23, Dic3, C12, C12, D6, C2xC6, C2xC6, C42, M4(2), D8, SD16, C2xD4, C2xD4, C4oD4, C4oD4, C3:C8, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C22xS3, C22xC6, C22xC6, C4.D4, C4wrC2, C4:1D4, C8:C22, 2+ 1+4, C4.Dic3, C4xDic3, D4:S3, Q8:2S3, C2xD12, C2xC3:D4, C6xD4, C6xD4, C3xC4oD4, C3xC4oD4, D4:4D4, C12.D4, Q8:3Dic3, C12:3D4, D4:D6, C3x2+ 1+4, 2+ 1+4:6S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:D4, C22xS3, C22wrC2, C2xC3:D4, D4:4D4, C24:4S3, 2+ 1+4:6S3

Permutation representations of 2+ 1+4:6S3
On 24 points - transitive group 24T347
Generators in S24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 24)(2 23)(3 22)(4 21)(5 13)(6 16)(7 15)(8 14)(9 19)(10 18)(11 17)(12 20)
(1 2 3 4)(5 8 7 6)(9 12 11 10)(13 14 15 16)(17 18 19 20)(21 24 23 22)
(1 23)(2 24)(3 21)(4 22)(5 16)(6 13)(7 14)(8 15)(9 20)(10 17)(11 18)(12 19)
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 10 23)(6 11 24)(7 12 21)(8 9 22)
(2 4)(5 11)(6 10)(7 9)(8 12)(13 20)(14 19)(15 18)(16 17)(21 22)(23 24)

G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24)(2,23)(3,22)(4,21)(5,13)(6,16)(7,15)(8,14)(9,19)(10,18)(11,17)(12,20), (1,2,3,4)(5,8,7,6)(9,12,11,10)(13,14,15,16)(17,18,19,20)(21,24,23,22), (1,23)(2,24)(3,21)(4,22)(5,16)(6,13)(7,14)(8,15)(9,20)(10,17)(11,18)(12,19), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (2,4)(5,11)(6,10)(7,9)(8,12)(13,20)(14,19)(15,18)(16,17)(21,22)(23,24)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24)(2,23)(3,22)(4,21)(5,13)(6,16)(7,15)(8,14)(9,19)(10,18)(11,17)(12,20), (1,2,3,4)(5,8,7,6)(9,12,11,10)(13,14,15,16)(17,18,19,20)(21,24,23,22), (1,23)(2,24)(3,21)(4,22)(5,16)(6,13)(7,14)(8,15)(9,20)(10,17)(11,18)(12,19), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (2,4)(5,11)(6,10)(7,9)(8,12)(13,20)(14,19)(15,18)(16,17)(21,22)(23,24) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,24),(2,23),(3,22),(4,21),(5,13),(6,16),(7,15),(8,14),(9,19),(10,18),(11,17),(12,20)], [(1,2,3,4),(5,8,7,6),(9,12,11,10),(13,14,15,16),(17,18,19,20),(21,24,23,22)], [(1,23),(2,24),(3,21),(4,22),(5,16),(6,13),(7,14),(8,15),(9,20),(10,17),(11,18),(12,19)], [(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,10,23),(6,11,24),(7,12,21),(8,9,22)], [(2,4),(5,11),(6,10),(7,9),(8,12),(13,20),(14,19),(15,18),(16,17),(21,22),(23,24)]])

G:=TransitiveGroup(24,347);

33 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F6A6B···6J8A8B12A···12F
order12222222344444466···68812···12
size11244442422244121224···424244···4

33 irreducible representations

dim11111122222222248
type++++++++++++++
imageC1C2C2C2C2C2S3D4D4D4D6D6C3:D4C3:D4C3:D4D4:4D42+ 1+4:6S3
kernel2+ 1+4:6S3C12.D4Q8:3Dic3C12:3D4D4:D6C3x2+ 1+42+ 1+4C3xD4C3xQ8C22xC6C2xD4C4oD4D4Q8C23C3C1
# reps11212112221244421

Matrix representation of 2+ 1+4:6S3 in GL6(F73)

7200000
0720000
0072200
0072100
0000722
0000721
,
1720000
0720000
0000722
000001
0072200
000100
,
100000
010000
0017100
0017200
0000722
0000721
,
7200000
0720000
0000722
0000721
0017100
0017200
,
64450000
080000
001000
000100
000010
000001
,
100000
2720000
001000
0017200
0000171
0000072

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,72,0,0,0,0,2,1,0,0,0,0,0,0,72,72,0,0,0,0,2,1],[1,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,2,1,0,0,72,0,0,0,0,0,2,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,71,72,0,0,0,0,0,0,72,72,0,0,0,0,2,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,1,0,0,0,0,71,72,0,0,72,72,0,0,0,0,2,1,0,0],[64,0,0,0,0,0,45,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,2,0,0,0,0,0,72,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,71,72] >;

2+ 1+4:6S3 in GAP, Magma, Sage, TeX

2_+^{1+4}\rtimes_6S_3
% in TeX

G:=Group("ES+(2,2):6S3");
// GroupNames label

G:=SmallGroup(192,800);
// by ID

G=gap.SmallGroup(192,800);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,254,570,1684,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=b^2=d^2=e^3=f^2=1,c^2=a^2,b*a*b=f*a*f=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=a*b,d*c*d=f*c*f=a^2*c,c*e=e*c,d*e=e*d,f*d*f=c*d,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<