Copied to
clipboard

G = C24:7D4order 192 = 26·3

7th semidirect product of C24 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24:7D4, C8:2D12, C4.Q8:3S3, C3:2(C8:2D4), C4:C4.39D6, (C2xC8).61D6, (C2xD24):24C2, C12:D4:6C2, C4.51(C2xD12), C12.131(C2xD4), C6.D8:16C2, C12.30(C4oD4), C2.22(Q8:3D6), C6.44(C4:D4), C6.70(C8:C22), C4.4(Q8:3S3), (C2xDic3).42D4, (C22xS3).24D4, C22.217(S3xD4), C2.17(C12:D4), (C2xC12).281C23, (C2xC24).110C22, (C2xD12).75C22, (C3xC4.Q8):3C2, (C2xC8:S3):2C2, (C2xC6).286(C2xD4), (C2xC3:C8).58C22, (S3xC2xC4).33C22, (C3xC4:C4).74C22, (C2xC4).384(C22xS3), SmallGroup(192,424)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C24:7D4
C1C3C6C2xC6C2xC12S3xC2xC4C2xC8:S3 — C24:7D4
C3C6C2xC12 — C24:7D4
C1C22C2xC4C4.Q8

Generators and relations for C24:7D4
 G = < a,b,c | a24=b4=c2=1, bab-1=a19, cac=a-1, cbc=b-1 >

Subgroups: 512 in 130 conjugacy classes, 41 normal (23 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, C23, Dic3, C12, C12, D6, C2xC6, C22:C4, C4:C4, C2xC8, C2xC8, M4(2), D8, C22xC4, C2xD4, C3:C8, C24, C4xS3, D12, C2xDic3, C2xC12, C2xC12, C22xS3, C22xS3, D4:C4, C4.Q8, C4:D4, C2xM4(2), C2xD8, C8:S3, D24, C2xC3:C8, D6:C4, C3xC4:C4, C2xC24, S3xC2xC4, C2xD12, C2xD12, C8:2D4, C6.D8, C3xC4.Q8, C12:D4, C2xC8:S3, C2xD24, C24:7D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, D12, C22xS3, C4:D4, C8:C22, C2xD12, S3xD4, Q8:3S3, C8:2D4, C12:D4, Q8:3D6, C24:7D4

Character table of C24:7D4

 class 12A2B2C2D2E2F34A4B4C4D4E6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
 size 111112242422288122224412124488884444
ρ1111111111111111111111111111111    trivial
ρ211111-1-1111-1-11111111111-1-1-1-11111    linear of order 2
ρ31111-11-1111-11-1111-1-11111-111-1-1-1-1-1    linear of order 2
ρ41111-1-111111-1-1111-1-111111-1-11-1-1-1-1    linear of order 2
ρ51111-1-1-111111-111111-1-11111111111    linear of order 2
ρ61111-111111-1-1-111111-1-111-1-1-1-11111    linear of order 2
ρ711111-11111-111111-1-1-1-111-111-1-1-1-1-1    linear of order 2
ρ8111111-11111-11111-1-1-1-1111-1-11-1-1-1-1    linear of order 2
ρ92222000-122-220-1-1-1-2-200-1-11-1-111111    orthogonal lifted from D6
ρ1022222002-2-200-22220000-2-200000000    orthogonal lifted from D4
ρ112222000-122220-1-1-12200-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ122222000-1222-20-1-1-1-2-200-1-1-111-11111    orthogonal lifted from D6
ρ1322-2-20002-22000-22-22-200-220000-22-22    orthogonal lifted from D4
ρ142222-2002-2-20022220000-2-200000000    orthogonal lifted from D4
ρ152222000-122-2-20-1-1-12200-1-11111-1-1-1-1    orthogonal lifted from D6
ρ1622-2-20002-22000-22-2-2200-2200002-22-2    orthogonal lifted from D4
ρ1722-2-2000-1-220001-112-2001-13-33-31-11-1    orthogonal lifted from D12
ρ1822-2-2000-1-220001-112-2001-1-33-331-11-1    orthogonal lifted from D12
ρ1922-2-2000-1-220001-11-22001-133-3-3-11-11    orthogonal lifted from D12
ρ2022-2-2000-1-220001-11-22001-1-3-333-11-11    orthogonal lifted from D12
ρ2122-2-200022-2000-22-2002i-2i2-200000000    complex lifted from C4oD4
ρ2222-2-200022-2000-22-200-2i2i2-200000000    complex lifted from C4oD4
ρ234-4-44000400000-4-4400000000000000    orthogonal lifted from C8:C22
ρ2444-4-4000-24-40002-220000-2200000000    orthogonal lifted from Q8:3S3, Schur index 2
ρ254444000-2-4-4000-2-2-200002200000000    orthogonal lifted from S3xD4
ρ264-44-40004000004-4-400000000000000    orthogonal lifted from C8:C22
ρ274-44-4000-200000-2220000000000-6-666    orthogonal lifted from Q8:3D6
ρ284-4-44000-20000022-20000000000-666-6    orthogonal lifted from Q8:3D6
ρ294-4-44000-20000022-200000000006-6-66    orthogonal lifted from Q8:3D6
ρ304-44-4000-200000-222000000000066-6-6    orthogonal lifted from Q8:3D6

Smallest permutation representation of C24:7D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 74 40 70)(2 93 41 65)(3 88 42 60)(4 83 43 55)(5 78 44 50)(6 73 45 69)(7 92 46 64)(8 87 47 59)(9 82 48 54)(10 77 25 49)(11 96 26 68)(12 91 27 63)(13 86 28 58)(14 81 29 53)(15 76 30 72)(16 95 31 67)(17 90 32 62)(18 85 33 57)(19 80 34 52)(20 75 35 71)(21 94 36 66)(22 89 37 61)(23 84 38 56)(24 79 39 51)
(1 40)(2 39)(3 38)(4 37)(5 36)(6 35)(7 34)(8 33)(9 32)(10 31)(11 30)(12 29)(13 28)(14 27)(15 26)(16 25)(17 48)(18 47)(19 46)(20 45)(21 44)(22 43)(23 42)(24 41)(49 67)(50 66)(51 65)(52 64)(53 63)(54 62)(55 61)(56 60)(57 59)(68 72)(69 71)(73 75)(76 96)(77 95)(78 94)(79 93)(80 92)(81 91)(82 90)(83 89)(84 88)(85 87)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,74,40,70)(2,93,41,65)(3,88,42,60)(4,83,43,55)(5,78,44,50)(6,73,45,69)(7,92,46,64)(8,87,47,59)(9,82,48,54)(10,77,25,49)(11,96,26,68)(12,91,27,63)(13,86,28,58)(14,81,29,53)(15,76,30,72)(16,95,31,67)(17,90,32,62)(18,85,33,57)(19,80,34,52)(20,75,35,71)(21,94,36,66)(22,89,37,61)(23,84,38,56)(24,79,39,51), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59)(68,72)(69,71)(73,75)(76,96)(77,95)(78,94)(79,93)(80,92)(81,91)(82,90)(83,89)(84,88)(85,87)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,74,40,70)(2,93,41,65)(3,88,42,60)(4,83,43,55)(5,78,44,50)(6,73,45,69)(7,92,46,64)(8,87,47,59)(9,82,48,54)(10,77,25,49)(11,96,26,68)(12,91,27,63)(13,86,28,58)(14,81,29,53)(15,76,30,72)(16,95,31,67)(17,90,32,62)(18,85,33,57)(19,80,34,52)(20,75,35,71)(21,94,36,66)(22,89,37,61)(23,84,38,56)(24,79,39,51), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59)(68,72)(69,71)(73,75)(76,96)(77,95)(78,94)(79,93)(80,92)(81,91)(82,90)(83,89)(84,88)(85,87) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,74,40,70),(2,93,41,65),(3,88,42,60),(4,83,43,55),(5,78,44,50),(6,73,45,69),(7,92,46,64),(8,87,47,59),(9,82,48,54),(10,77,25,49),(11,96,26,68),(12,91,27,63),(13,86,28,58),(14,81,29,53),(15,76,30,72),(16,95,31,67),(17,90,32,62),(18,85,33,57),(19,80,34,52),(20,75,35,71),(21,94,36,66),(22,89,37,61),(23,84,38,56),(24,79,39,51)], [(1,40),(2,39),(3,38),(4,37),(5,36),(6,35),(7,34),(8,33),(9,32),(10,31),(11,30),(12,29),(13,28),(14,27),(15,26),(16,25),(17,48),(18,47),(19,46),(20,45),(21,44),(22,43),(23,42),(24,41),(49,67),(50,66),(51,65),(52,64),(53,63),(54,62),(55,61),(56,60),(57,59),(68,72),(69,71),(73,75),(76,96),(77,95),(78,94),(79,93),(80,92),(81,91),(82,90),(83,89),(84,88),(85,87)]])

Matrix representation of C24:7D4 in GL8(F73)

551832320000
55374100000
606018550000
13018360000
0000111120
0000601020
000032325921
000056594012
,
7147100000
59660710000
0066590000
001470000
00000010
00002121723
00001000
00004848052
,
720000000
11000000
00100000
0072720000
00001000
000007200
00000010
00005902572

G:=sub<GL(8,GF(73))| [55,55,60,13,0,0,0,0,18,37,60,0,0,0,0,0,32,41,18,18,0,0,0,0,32,0,55,36,0,0,0,0,0,0,0,0,1,60,32,56,0,0,0,0,1,1,32,59,0,0,0,0,11,0,59,40,0,0,0,0,20,20,21,12],[7,59,0,0,0,0,0,0,14,66,0,0,0,0,0,0,71,0,66,14,0,0,0,0,0,71,59,7,0,0,0,0,0,0,0,0,0,21,1,48,0,0,0,0,0,21,0,48,0,0,0,0,1,72,0,0,0,0,0,0,0,3,0,52],[72,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,59,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,25,0,0,0,0,0,0,0,72] >;

C24:7D4 in GAP, Magma, Sage, TeX

C_{24}\rtimes_7D_4
% in TeX

G:=Group("C24:7D4");
// GroupNames label

G:=SmallGroup(192,424);
// by ID

G=gap.SmallGroup(192,424);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,120,254,555,58,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=c^2=1,b*a*b^-1=a^19,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Character table of C24:7D4 in TeX

׿
x
:
Z
F
o
wr
Q
<