extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×D4⋊C4)⋊1C2 = C3×C8⋊8D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):1C2 | 192,898 |
(C3×D4⋊C4)⋊2C2 = C3×C8⋊7D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):2C2 | 192,899 |
(C3×D4⋊C4)⋊3C2 = C3×C4.4D8 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):3C2 | 192,919 |
(C3×D4⋊C4)⋊4C2 = D4⋊D12 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 48 | | (C3xD4:C4):4C2 | 192,332 |
(C3×D4⋊C4)⋊5C2 = D6.D8 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):5C2 | 192,333 |
(C3×D4⋊C4)⋊6C2 = D4.D12 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):6C2 | 192,342 |
(C3×D4⋊C4)⋊7C2 = C24⋊1C4⋊C2 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):7C2 | 192,343 |
(C3×D4⋊C4)⋊8C2 = D12⋊3D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):8C2 | 192,345 |
(C3×D4⋊C4)⋊9C2 = Dic6⋊2D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):9C2 | 192,321 |
(C3×D4⋊C4)⋊10C2 = D6⋊5SD16 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 48 | | (C3xD4:C4):10C2 | 192,335 |
(C3×D4⋊C4)⋊11C2 = D6.SD16 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):11C2 | 192,336 |
(C3×D4⋊C4)⋊12C2 = D6⋊C8⋊11C2 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):12C2 | 192,338 |
(C3×D4⋊C4)⋊13C2 = D4⋊3D12 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):13C2 | 192,340 |
(C3×D4⋊C4)⋊14C2 = D12.D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):14C2 | 192,346 |
(C3×D4⋊C4)⋊15C2 = C3×C22⋊D8 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 48 | | (C3xD4:C4):15C2 | 192,880 |
(C3×D4⋊C4)⋊16C2 = C3×D4.7D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):16C2 | 192,885 |
(C3×D4⋊C4)⋊17C2 = C3×C4⋊D8 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):17C2 | 192,892 |
(C3×D4⋊C4)⋊18C2 = C3×C22.D8 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):18C2 | 192,913 |
(C3×D4⋊C4)⋊19C2 = C3×C23.19D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):19C2 | 192,915 |
(C3×D4⋊C4)⋊20C2 = Dic3⋊4D8 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):20C2 | 192,315 |
(C3×D4⋊C4)⋊21C2 = Dic3.SD16 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):21C2 | 192,319 |
(C3×D4⋊C4)⋊22C2 = C4⋊C4.D6 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):22C2 | 192,323 |
(C3×D4⋊C4)⋊23C2 = S3×D4⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 48 | | (C3xD4:C4):23C2 | 192,328 |
(C3×D4⋊C4)⋊24C2 = C4⋊C4⋊19D6 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 48 | | (C3xD4:C4):24C2 | 192,329 |
(C3×D4⋊C4)⋊25C2 = D4⋊(C4×S3) | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):25C2 | 192,330 |
(C3×D4⋊C4)⋊26C2 = D4⋊2S3⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):26C2 | 192,331 |
(C3×D4⋊C4)⋊27C2 = D6⋊D8 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):27C2 | 192,334 |
(C3×D4⋊C4)⋊28C2 = D6⋊SD16 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):28C2 | 192,337 |
(C3×D4⋊C4)⋊29C2 = C3⋊C8⋊1D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):29C2 | 192,339 |
(C3×D4⋊C4)⋊30C2 = C3⋊C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):30C2 | 192,341 |
(C3×D4⋊C4)⋊31C2 = D4⋊S3⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):31C2 | 192,344 |
(C3×D4⋊C4)⋊32C2 = C3×D4⋊D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):32C2 | 192,882 |
(C3×D4⋊C4)⋊33C2 = C3×C22⋊SD16 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 48 | | (C3xD4:C4):33C2 | 192,883 |
(C3×D4⋊C4)⋊34C2 = C3×C4⋊SD16 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):34C2 | 192,893 |
(C3×D4⋊C4)⋊35C2 = C3×D4.2D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):35C2 | 192,896 |
(C3×D4⋊C4)⋊36C2 = C3×C23.46D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):36C2 | 192,914 |
(C3×D4⋊C4)⋊37C2 = C3×C23.36D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):37C2 | 192,850 |
(C3×D4⋊C4)⋊38C2 = C3×C23.37D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 48 | | (C3xD4:C4):38C2 | 192,851 |
(C3×D4⋊C4)⋊39C2 = C3×D8⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):39C2 | 192,875 |
(C3×D4⋊C4)⋊40C2 = C3×C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):40C2 | 192,901 |
(C3×D4⋊C4)⋊41C2 = C3×C8⋊2D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):41C2 | 192,902 |
(C3×D4⋊C4)⋊42C2 = C3×C42.29C22 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4):42C2 | 192,923 |
(C3×D4⋊C4)⋊43C2 = C3×C23.24D4 | φ: trivial image | 96 | | (C3xD4:C4):43C2 | 192,849 |
(C3×D4⋊C4)⋊44C2 = C12×D8 | φ: trivial image | 96 | | (C3xD4:C4):44C2 | 192,870 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×D4⋊C4).1C2 = C3×C42.78C22 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).1C2 | 192,921 |
(C3×D4⋊C4).2C2 = Dic3.D8 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).2C2 | 192,318 |
(C3×D4⋊C4).3C2 = D4.2Dic6 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).3C2 | 192,325 |
(C3×D4⋊C4).4C2 = Dic6.D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).4C2 | 192,326 |
(C3×D4⋊C4).5C2 = D4⋊Dic6 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).5C2 | 192,320 |
(C3×D4⋊C4).6C2 = D4.Dic6 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).6C2 | 192,322 |
(C3×D4⋊C4).7C2 = C3×Q8.D4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).7C2 | 192,897 |
(C3×D4⋊C4).8C2 = C3×D4⋊Q8 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).8C2 | 192,907 |
(C3×D4⋊C4).9C2 = C3×D4.Q8 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).9C2 | 192,911 |
(C3×D4⋊C4).10C2 = D4.S3⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).10C2 | 192,316 |
(C3×D4⋊C4).11C2 = Dic3⋊6SD16 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).11C2 | 192,317 |
(C3×D4⋊C4).12C2 = C12⋊Q8⋊C2 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).12C2 | 192,324 |
(C3×D4⋊C4).13C2 = (C2×C8).200D6 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).13C2 | 192,327 |
(C3×D4⋊C4).14C2 = C3×D4⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).14C2 | 192,909 |
(C3×D4⋊C4).15C2 = C3×SD16⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).15C2 | 192,873 |
(C3×D4⋊C4).16C2 = C3×C42.28C22 | φ: C2/C1 → C2 ⊆ Out C3×D4⋊C4 | 96 | | (C3xD4:C4).16C2 | 192,922 |
(C3×D4⋊C4).17C2 = C12×SD16 | φ: trivial image | 96 | | (C3xD4:C4).17C2 | 192,871 |