Extensions 1→N→G→Q→1 with N=C4xS3 and Q=D4

Direct product G=NxQ with N=C4xS3 and Q=D4
dρLabelID
C4xS3xD448C4xS3xD4192,1103

Semidirect products G=N:Q with N=C4xS3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C4xS3):1D4 = C6.382+ 1+4φ: D4/C2C22 ⊆ Out C4xS348(C4xS3):1D4192,1166
(C4xS3):2D4 = C6.722- 1+4φ: D4/C2C22 ⊆ Out C4xS396(C4xS3):2D4192,1167
(C4xS3):3D4 = C6.172- 1+4φ: D4/C2C22 ⊆ Out C4xS396(C4xS3):3D4192,1188
(C4xS3):4D4 = C42:20D6φ: D4/C2C22 ⊆ Out C4xS348(C4xS3):4D4192,1233
(C4xS3):5D4 = C42:28D6φ: D4/C2C22 ⊆ Out C4xS348(C4xS3):5D4192,1274
(C4xS3):6D4 = C42.233D6φ: D4/C4C2 ⊆ Out C4xS396(C4xS3):6D4192,1227
(C4xS3):7D4 = S3xC4:1D4φ: D4/C4C2 ⊆ Out C4xS348(C4xS3):7D4192,1273
(C4xS3):8D4 = C42.238D6φ: D4/C4C2 ⊆ Out C4xS396(C4xS3):8D4192,1275
(C4xS3):9D4 = C42.240D6φ: D4/C4C2 ⊆ Out C4xS396(C4xS3):9D4192,1284
(C4xS3):10D4 = C42.228D6φ: D4/C4C2 ⊆ Out C4xS396(C4xS3):10D4192,1107
(C4xS3):11D4 = S3xC4:D4φ: D4/C22C2 ⊆ Out C4xS348(C4xS3):11D4192,1163
(C4xS3):12D4 = C4:C4:21D6φ: D4/C22C2 ⊆ Out C4xS348(C4xS3):12D4192,1165
(C4xS3):13D4 = C4:C4:26D6φ: D4/C22C2 ⊆ Out C4xS348(C4xS3):13D4192,1186
(C4xS3):14D4 = C42:14D6φ: D4/C22C2 ⊆ Out C4xS348(C4xS3):14D4192,1106

Non-split extensions G=N.Q with N=C4xS3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C4xS3).1D4 = S3xC4.D4φ: D4/C2C22 ⊆ Out C4xS3248+(C4xS3).1D4192,303
(C4xS3).2D4 = S3xC4.10D4φ: D4/C2C22 ⊆ Out C4xS3488-(C4xS3).2D4192,309
(C4xS3).3D4 = C4:C4:19D6φ: D4/C2C22 ⊆ Out C4xS348(C4xS3).3D4192,329
(C4xS3).4D4 = D4:(C4xS3)φ: D4/C2C22 ⊆ Out C4xS396(C4xS3).4D4192,330
(C4xS3).5D4 = (S3xQ8):C4φ: D4/C2C22 ⊆ Out C4xS396(C4xS3).5D4192,361
(C4xS3).6D4 = Q8:7(C4xS3)φ: D4/C2C22 ⊆ Out C4xS396(C4xS3).6D4192,362
(C4xS3).7D4 = D8:D6φ: D4/C2C22 ⊆ Out C4xS3484(C4xS3).7D4192,470
(C4xS3).8D4 = D48:C2φ: D4/C2C22 ⊆ Out C4xS3484+(C4xS3).8D4192,473
(C4xS3).9D4 = SD32:S3φ: D4/C2C22 ⊆ Out C4xS3964-(C4xS3).9D4192,474
(C4xS3).10D4 = Q32:S3φ: D4/C2C22 ⊆ Out C4xS3964(C4xS3).10D4192,477
(C4xS3).11D4 = C6.162- 1+4φ: D4/C2C22 ⊆ Out C4xS396(C4xS3).11D4192,1187
(C4xS3).12D4 = C42.141D6φ: D4/C2C22 ⊆ Out C4xS396(C4xS3).12D4192,1234
(C4xS3).13D4 = C42.171D6φ: D4/C2C22 ⊆ Out C4xS396(C4xS3).13D4192,1283
(C4xS3).14D4 = C2xD8:S3φ: D4/C2C22 ⊆ Out C4xS348(C4xS3).14D4192,1314
(C4xS3).15D4 = C2xQ8:3D6φ: D4/C2C22 ⊆ Out C4xS348(C4xS3).15D4192,1318
(C4xS3).16D4 = C2xD4.D6φ: D4/C2C22 ⊆ Out C4xS396(C4xS3).16D4192,1319
(C4xS3).17D4 = C2xQ16:S3φ: D4/C2C22 ⊆ Out C4xS396(C4xS3).17D4192,1323
(C4xS3).18D4 = S3xD16φ: D4/C4C2 ⊆ Out C4xS3484+(C4xS3).18D4192,469
(C4xS3).19D4 = D16:3S3φ: D4/C4C2 ⊆ Out C4xS3964-(C4xS3).19D4192,471
(C4xS3).20D4 = S3xSD32φ: D4/C4C2 ⊆ Out C4xS3484(C4xS3).20D4192,472
(C4xS3).21D4 = D6.2D8φ: D4/C4C2 ⊆ Out C4xS3964(C4xS3).21D4192,475
(C4xS3).22D4 = S3xQ32φ: D4/C4C2 ⊆ Out C4xS3964-(C4xS3).22D4192,476
(C4xS3).23D4 = D48:5C2φ: D4/C4C2 ⊆ Out C4xS3964+(C4xS3).23D4192,478
(C4xS3).24D4 = S3xC4.4D4φ: D4/C4C2 ⊆ Out C4xS348(C4xS3).24D4192,1232
(C4xS3).25D4 = S3xC4:Q8φ: D4/C4C2 ⊆ Out C4xS396(C4xS3).25D4192,1282
(C4xS3).26D4 = C2xS3xD8φ: D4/C4C2 ⊆ Out C4xS348(C4xS3).26D4192,1313
(C4xS3).27D4 = C2xD8:3S3φ: D4/C4C2 ⊆ Out C4xS396(C4xS3).27D4192,1315
(C4xS3).28D4 = C2xS3xSD16φ: D4/C4C2 ⊆ Out C4xS348(C4xS3).28D4192,1317
(C4xS3).29D4 = C2xQ8.7D6φ: D4/C4C2 ⊆ Out C4xS396(C4xS3).29D4192,1320
(C4xS3).30D4 = C2xS3xQ16φ: D4/C4C2 ⊆ Out C4xS396(C4xS3).30D4192,1322
(C4xS3).31D4 = C2xD24:C2φ: D4/C4C2 ⊆ Out C4xS396(C4xS3).31D4192,1324
(C4xS3).32D4 = S3xC4wrC2φ: D4/C4C2 ⊆ Out C4xS3244(C4xS3).32D4192,379
(C4xS3).33D4 = C12:M4(2)φ: D4/C4C2 ⊆ Out C4xS396(C4xS3).33D4192,396
(C4xS3).34D4 = S3xC8.C4φ: D4/C4C2 ⊆ Out C4xS3484(C4xS3).34D4192,451
(C4xS3).35D4 = M4(2).19D6φ: D4/C22C2 ⊆ Out C4xS3488-(C4xS3).35D4192,304
(C4xS3).36D4 = M4(2).21D6φ: D4/C22C2 ⊆ Out C4xS3488+(C4xS3).36D4192,310
(C4xS3).37D4 = S3xD4:C4φ: D4/C22C2 ⊆ Out C4xS348(C4xS3).37D4192,328
(C4xS3).38D4 = D4:2S3:C4φ: D4/C22C2 ⊆ Out C4xS396(C4xS3).38D4192,331
(C4xS3).39D4 = S3xQ8:C4φ: D4/C22C2 ⊆ Out C4xS396(C4xS3).39D4192,360
(C4xS3).40D4 = C4:C4.150D6φ: D4/C22C2 ⊆ Out C4xS396(C4xS3).40D4192,363
(C4xS3).41D4 = S3xC22:Q8φ: D4/C22C2 ⊆ Out C4xS348(C4xS3).41D4192,1185
(C4xS3).42D4 = S3xC8:C22φ: D4/C22C2 ⊆ Out C4xS3248+(C4xS3).42D4192,1331
(C4xS3).43D4 = D8:4D6φ: D4/C22C2 ⊆ Out C4xS3488-(C4xS3).43D4192,1332
(C4xS3).44D4 = S3xC8.C22φ: D4/C22C2 ⊆ Out C4xS3488-(C4xS3).44D4192,1335
(C4xS3).45D4 = D24:C22φ: D4/C22C2 ⊆ Out C4xS3488+(C4xS3).45D4192,1336
(C4xS3).46D4 = D6:M4(2)φ: D4/C22C2 ⊆ Out C4xS348(C4xS3).46D4192,285
(C4xS3).47D4 = D6:C8:C2φ: D4/C22C2 ⊆ Out C4xS396(C4xS3).47D4192,286
(C4xS3).48D4 = C42:3D6φ: D4/C22C2 ⊆ Out C4xS3484(C4xS3).48D4192,380
(C4xS3).49D4 = C42.30D6φ: D4/C22C2 ⊆ Out C4xS396(C4xS3).49D4192,398
(C4xS3).50D4 = M4(2).25D6φ: D4/C22C2 ⊆ Out C4xS3484(C4xS3).50D4192,452
(C4xS3).51D4 = SD16:D6φ: D4/C22C2 ⊆ Out C4xS3484(C4xS3).51D4192,1327
(C4xS3).52D4 = S3xC22:C8φ: trivial image48(C4xS3).52D4192,283
(C4xS3).53D4 = S3xC4:C8φ: trivial image96(C4xS3).53D4192,391
(C4xS3).54D4 = S3xC4oD8φ: trivial image484(C4xS3).54D4192,1326

׿
x
:
Z
F
o
wr
Q
<