extension | φ:Q→Out N | d | ρ | Label | ID |
(C4xS3).1D4 = S3xC4.D4 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 24 | 8+ | (C4xS3).1D4 | 192,303 |
(C4xS3).2D4 = S3xC4.10D4 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 48 | 8- | (C4xS3).2D4 | 192,309 |
(C4xS3).3D4 = C4:C4:19D6 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 48 | | (C4xS3).3D4 | 192,329 |
(C4xS3).4D4 = D4:(C4xS3) | φ: D4/C2 → C22 ⊆ Out C4xS3 | 96 | | (C4xS3).4D4 | 192,330 |
(C4xS3).5D4 = (S3xQ8):C4 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 96 | | (C4xS3).5D4 | 192,361 |
(C4xS3).6D4 = Q8:7(C4xS3) | φ: D4/C2 → C22 ⊆ Out C4xS3 | 96 | | (C4xS3).6D4 | 192,362 |
(C4xS3).7D4 = D8:D6 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 48 | 4 | (C4xS3).7D4 | 192,470 |
(C4xS3).8D4 = D48:C2 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 48 | 4+ | (C4xS3).8D4 | 192,473 |
(C4xS3).9D4 = SD32:S3 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 96 | 4- | (C4xS3).9D4 | 192,474 |
(C4xS3).10D4 = Q32:S3 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 96 | 4 | (C4xS3).10D4 | 192,477 |
(C4xS3).11D4 = C6.162- 1+4 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 96 | | (C4xS3).11D4 | 192,1187 |
(C4xS3).12D4 = C42.141D6 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 96 | | (C4xS3).12D4 | 192,1234 |
(C4xS3).13D4 = C42.171D6 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 96 | | (C4xS3).13D4 | 192,1283 |
(C4xS3).14D4 = C2xD8:S3 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 48 | | (C4xS3).14D4 | 192,1314 |
(C4xS3).15D4 = C2xQ8:3D6 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 48 | | (C4xS3).15D4 | 192,1318 |
(C4xS3).16D4 = C2xD4.D6 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 96 | | (C4xS3).16D4 | 192,1319 |
(C4xS3).17D4 = C2xQ16:S3 | φ: D4/C2 → C22 ⊆ Out C4xS3 | 96 | | (C4xS3).17D4 | 192,1323 |
(C4xS3).18D4 = S3xD16 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 48 | 4+ | (C4xS3).18D4 | 192,469 |
(C4xS3).19D4 = D16:3S3 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 96 | 4- | (C4xS3).19D4 | 192,471 |
(C4xS3).20D4 = S3xSD32 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 48 | 4 | (C4xS3).20D4 | 192,472 |
(C4xS3).21D4 = D6.2D8 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 96 | 4 | (C4xS3).21D4 | 192,475 |
(C4xS3).22D4 = S3xQ32 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 96 | 4- | (C4xS3).22D4 | 192,476 |
(C4xS3).23D4 = D48:5C2 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 96 | 4+ | (C4xS3).23D4 | 192,478 |
(C4xS3).24D4 = S3xC4.4D4 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 48 | | (C4xS3).24D4 | 192,1232 |
(C4xS3).25D4 = S3xC4:Q8 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 96 | | (C4xS3).25D4 | 192,1282 |
(C4xS3).26D4 = C2xS3xD8 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 48 | | (C4xS3).26D4 | 192,1313 |
(C4xS3).27D4 = C2xD8:3S3 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 96 | | (C4xS3).27D4 | 192,1315 |
(C4xS3).28D4 = C2xS3xSD16 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 48 | | (C4xS3).28D4 | 192,1317 |
(C4xS3).29D4 = C2xQ8.7D6 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 96 | | (C4xS3).29D4 | 192,1320 |
(C4xS3).30D4 = C2xS3xQ16 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 96 | | (C4xS3).30D4 | 192,1322 |
(C4xS3).31D4 = C2xD24:C2 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 96 | | (C4xS3).31D4 | 192,1324 |
(C4xS3).32D4 = S3xC4wrC2 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 24 | 4 | (C4xS3).32D4 | 192,379 |
(C4xS3).33D4 = C12:M4(2) | φ: D4/C4 → C2 ⊆ Out C4xS3 | 96 | | (C4xS3).33D4 | 192,396 |
(C4xS3).34D4 = S3xC8.C4 | φ: D4/C4 → C2 ⊆ Out C4xS3 | 48 | 4 | (C4xS3).34D4 | 192,451 |
(C4xS3).35D4 = M4(2).19D6 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 48 | 8- | (C4xS3).35D4 | 192,304 |
(C4xS3).36D4 = M4(2).21D6 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 48 | 8+ | (C4xS3).36D4 | 192,310 |
(C4xS3).37D4 = S3xD4:C4 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 48 | | (C4xS3).37D4 | 192,328 |
(C4xS3).38D4 = D4:2S3:C4 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 96 | | (C4xS3).38D4 | 192,331 |
(C4xS3).39D4 = S3xQ8:C4 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 96 | | (C4xS3).39D4 | 192,360 |
(C4xS3).40D4 = C4:C4.150D6 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 96 | | (C4xS3).40D4 | 192,363 |
(C4xS3).41D4 = S3xC22:Q8 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 48 | | (C4xS3).41D4 | 192,1185 |
(C4xS3).42D4 = S3xC8:C22 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 24 | 8+ | (C4xS3).42D4 | 192,1331 |
(C4xS3).43D4 = D8:4D6 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 48 | 8- | (C4xS3).43D4 | 192,1332 |
(C4xS3).44D4 = S3xC8.C22 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 48 | 8- | (C4xS3).44D4 | 192,1335 |
(C4xS3).45D4 = D24:C22 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 48 | 8+ | (C4xS3).45D4 | 192,1336 |
(C4xS3).46D4 = D6:M4(2) | φ: D4/C22 → C2 ⊆ Out C4xS3 | 48 | | (C4xS3).46D4 | 192,285 |
(C4xS3).47D4 = D6:C8:C2 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 96 | | (C4xS3).47D4 | 192,286 |
(C4xS3).48D4 = C42:3D6 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 48 | 4 | (C4xS3).48D4 | 192,380 |
(C4xS3).49D4 = C42.30D6 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 96 | | (C4xS3).49D4 | 192,398 |
(C4xS3).50D4 = M4(2).25D6 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 48 | 4 | (C4xS3).50D4 | 192,452 |
(C4xS3).51D4 = SD16:D6 | φ: D4/C22 → C2 ⊆ Out C4xS3 | 48 | 4 | (C4xS3).51D4 | 192,1327 |
(C4xS3).52D4 = S3xC22:C8 | φ: trivial image | 48 | | (C4xS3).52D4 | 192,283 |
(C4xS3).53D4 = S3xC4:C8 | φ: trivial image | 96 | | (C4xS3).53D4 | 192,391 |
(C4xS3).54D4 = S3xC4oD8 | φ: trivial image | 48 | 4 | (C4xS3).54D4 | 192,1326 |