extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×S3)⋊1D4 = C6.382+ 1+4 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 48 | | (C4xS3):1D4 | 192,1166 |
(C4×S3)⋊2D4 = C6.722- 1+4 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3):2D4 | 192,1167 |
(C4×S3)⋊3D4 = C6.172- 1+4 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3):3D4 | 192,1188 |
(C4×S3)⋊4D4 = C42⋊20D6 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 48 | | (C4xS3):4D4 | 192,1233 |
(C4×S3)⋊5D4 = C42⋊28D6 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 48 | | (C4xS3):5D4 | 192,1274 |
(C4×S3)⋊6D4 = C42.233D6 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3):6D4 | 192,1227 |
(C4×S3)⋊7D4 = S3×C4⋊1D4 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3):7D4 | 192,1273 |
(C4×S3)⋊8D4 = C42.238D6 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3):8D4 | 192,1275 |
(C4×S3)⋊9D4 = C42.240D6 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3):9D4 | 192,1284 |
(C4×S3)⋊10D4 = C42.228D6 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3):10D4 | 192,1107 |
(C4×S3)⋊11D4 = S3×C4⋊D4 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3):11D4 | 192,1163 |
(C4×S3)⋊12D4 = C4⋊C4⋊21D6 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3):12D4 | 192,1165 |
(C4×S3)⋊13D4 = C4⋊C4⋊26D6 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3):13D4 | 192,1186 |
(C4×S3)⋊14D4 = C42⋊14D6 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3):14D4 | 192,1106 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×S3).1D4 = S3×C4.D4 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 24 | 8+ | (C4xS3).1D4 | 192,303 |
(C4×S3).2D4 = S3×C4.10D4 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).2D4 | 192,309 |
(C4×S3).3D4 = C4⋊C4⋊19D6 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 48 | | (C4xS3).3D4 | 192,329 |
(C4×S3).4D4 = D4⋊(C4×S3) | φ: D4/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3).4D4 | 192,330 |
(C4×S3).5D4 = (S3×Q8)⋊C4 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3).5D4 | 192,361 |
(C4×S3).6D4 = Q8⋊7(C4×S3) | φ: D4/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3).6D4 | 192,362 |
(C4×S3).7D4 = D8⋊D6 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).7D4 | 192,470 |
(C4×S3).8D4 = D48⋊C2 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 48 | 4+ | (C4xS3).8D4 | 192,473 |
(C4×S3).9D4 = SD32⋊S3 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 96 | 4- | (C4xS3).9D4 | 192,474 |
(C4×S3).10D4 = Q32⋊S3 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 96 | 4 | (C4xS3).10D4 | 192,477 |
(C4×S3).11D4 = C6.162- 1+4 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3).11D4 | 192,1187 |
(C4×S3).12D4 = C42.141D6 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3).12D4 | 192,1234 |
(C4×S3).13D4 = C42.171D6 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3).13D4 | 192,1283 |
(C4×S3).14D4 = C2×D8⋊S3 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 48 | | (C4xS3).14D4 | 192,1314 |
(C4×S3).15D4 = C2×Q8⋊3D6 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 48 | | (C4xS3).15D4 | 192,1318 |
(C4×S3).16D4 = C2×D4.D6 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3).16D4 | 192,1319 |
(C4×S3).17D4 = C2×Q16⋊S3 | φ: D4/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3).17D4 | 192,1323 |
(C4×S3).18D4 = S3×D16 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 48 | 4+ | (C4xS3).18D4 | 192,469 |
(C4×S3).19D4 = D16⋊3S3 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | 4- | (C4xS3).19D4 | 192,471 |
(C4×S3).20D4 = S3×SD32 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).20D4 | 192,472 |
(C4×S3).21D4 = D6.2D8 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | 4 | (C4xS3).21D4 | 192,475 |
(C4×S3).22D4 = S3×Q32 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | 4- | (C4xS3).22D4 | 192,476 |
(C4×S3).23D4 = D48⋊5C2 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | 4+ | (C4xS3).23D4 | 192,478 |
(C4×S3).24D4 = S3×C4.4D4 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3).24D4 | 192,1232 |
(C4×S3).25D4 = S3×C4⋊Q8 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).25D4 | 192,1282 |
(C4×S3).26D4 = C2×S3×D8 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3).26D4 | 192,1313 |
(C4×S3).27D4 = C2×D8⋊3S3 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).27D4 | 192,1315 |
(C4×S3).28D4 = C2×S3×SD16 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3).28D4 | 192,1317 |
(C4×S3).29D4 = C2×Q8.7D6 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).29D4 | 192,1320 |
(C4×S3).30D4 = C2×S3×Q16 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).30D4 | 192,1322 |
(C4×S3).31D4 = C2×D24⋊C2 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).31D4 | 192,1324 |
(C4×S3).32D4 = S3×C4≀C2 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 24 | 4 | (C4xS3).32D4 | 192,379 |
(C4×S3).33D4 = C12⋊M4(2) | φ: D4/C4 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).33D4 | 192,396 |
(C4×S3).34D4 = S3×C8.C4 | φ: D4/C4 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).34D4 | 192,451 |
(C4×S3).35D4 = M4(2).19D6 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).35D4 | 192,304 |
(C4×S3).36D4 = M4(2).21D6 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).36D4 | 192,310 |
(C4×S3).37D4 = S3×D4⋊C4 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3).37D4 | 192,328 |
(C4×S3).38D4 = D4⋊2S3⋊C4 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).38D4 | 192,331 |
(C4×S3).39D4 = S3×Q8⋊C4 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).39D4 | 192,360 |
(C4×S3).40D4 = C4⋊C4.150D6 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).40D4 | 192,363 |
(C4×S3).41D4 = S3×C22⋊Q8 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3).41D4 | 192,1185 |
(C4×S3).42D4 = S3×C8⋊C22 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 24 | 8+ | (C4xS3).42D4 | 192,1331 |
(C4×S3).43D4 = D8⋊4D6 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).43D4 | 192,1332 |
(C4×S3).44D4 = S3×C8.C22 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).44D4 | 192,1335 |
(C4×S3).45D4 = D24⋊C22 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).45D4 | 192,1336 |
(C4×S3).46D4 = D6⋊M4(2) | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3).46D4 | 192,285 |
(C4×S3).47D4 = D6⋊C8⋊C2 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).47D4 | 192,286 |
(C4×S3).48D4 = C42⋊3D6 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).48D4 | 192,380 |
(C4×S3).49D4 = C42.30D6 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).49D4 | 192,398 |
(C4×S3).50D4 = M4(2).25D6 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).50D4 | 192,452 |
(C4×S3).51D4 = SD16⋊D6 | φ: D4/C22 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).51D4 | 192,1327 |
(C4×S3).52D4 = S3×C22⋊C8 | φ: trivial image | 48 | | (C4xS3).52D4 | 192,283 |
(C4×S3).53D4 = S3×C4⋊C8 | φ: trivial image | 96 | | (C4xS3).53D4 | 192,391 |
(C4×S3).54D4 = S3×C4○D8 | φ: trivial image | 48 | 4 | (C4xS3).54D4 | 192,1326 |