extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1D8 = C22.2D24 | φ: D8/C4 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).1D8 | 192,29 |
(C2×C6).2D8 = D24⋊2C4 | φ: D8/C4 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).2D8 | 192,77 |
(C2×C6).3D8 = (C6×D4)⋊C4 | φ: D8/C4 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).3D8 | 192,96 |
(C2×C6).4D8 = D8⋊2Dic3 | φ: D8/C4 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).4D8 | 192,125 |
(C2×C6).5D8 = C22.D24 | φ: D8/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).5D8 | 192,295 |
(C2×C6).6D8 = C16⋊D6 | φ: D8/C4 → C22 ⊆ Aut C2×C6 | 48 | 4+ | (C2xC6).6D8 | 192,467 |
(C2×C6).7D8 = C16.D6 | φ: D8/C4 → C22 ⊆ Aut C2×C6 | 96 | 4- | (C2xC6).7D8 | 192,468 |
(C2×C6).8D8 = (C2×C6).D8 | φ: D8/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).8D8 | 192,592 |
(C2×C6).9D8 = Q16⋊D6 | φ: D8/C4 → C22 ⊆ Aut C2×C6 | 48 | 4+ | (C2xC6).9D8 | 192,752 |
(C2×C6).10D8 = Q16.D6 | φ: D8/C4 → C22 ⊆ Aut C2×C6 | 96 | 4 | (C2xC6).10D8 | 192,753 |
(C2×C6).11D8 = D8.9D6 | φ: D8/C4 → C22 ⊆ Aut C2×C6 | 96 | 4- | (C2xC6).11D8 | 192,754 |
(C2×C6).12D8 = C3×C4○D16 | φ: D8/C8 → C2 ⊆ Aut C2×C6 | 96 | 2 | (C2xC6).12D8 | 192,941 |
(C2×C6).13D8 = C2.Dic24 | φ: D8/C8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).13D8 | 192,62 |
(C2×C6).14D8 = C48⋊5C4 | φ: D8/C8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).14D8 | 192,63 |
(C2×C6).15D8 = C48⋊6C4 | φ: D8/C8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).15D8 | 192,64 |
(C2×C6).16D8 = C2.D48 | φ: D8/C8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).16D8 | 192,68 |
(C2×C6).17D8 = C12.9C42 | φ: D8/C8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).17D8 | 192,110 |
(C2×C6).18D8 = C2×D48 | φ: D8/C8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).18D8 | 192,461 |
(C2×C6).19D8 = C2×C48⋊C2 | φ: D8/C8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).19D8 | 192,462 |
(C2×C6).20D8 = D48⋊7C2 | φ: D8/C8 → C2 ⊆ Aut C2×C6 | 96 | 2 | (C2xC6).20D8 | 192,463 |
(C2×C6).21D8 = C2×Dic24 | φ: D8/C8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).21D8 | 192,464 |
(C2×C6).22D8 = C2×C24⋊1C4 | φ: D8/C8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).22D8 | 192,664 |
(C2×C6).23D8 = C2×C2.D24 | φ: D8/C8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).23D8 | 192,671 |
(C2×C6).24D8 = C3×C22.SD16 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).24D8 | 192,133 |
(C2×C6).25D8 = C3×D8⋊2C4 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).25D8 | 192,166 |
(C2×C6).26D8 = C3×C22.D8 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).26D8 | 192,913 |
(C2×C6).27D8 = C3×C16⋊C22 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).27D8 | 192,942 |
(C2×C6).28D8 = C3×Q32⋊C2 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 96 | 4 | (C2xC6).28D8 | 192,943 |
(C2×C6).29D8 = C6.C4≀C2 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).29D8 | 192,10 |
(C2×C6).30D8 = D24⋊8C4 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).30D8 | 192,47 |
(C2×C6).31D8 = C6.6D16 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).31D8 | 192,48 |
(C2×C6).32D8 = C6.SD32 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).32D8 | 192,49 |
(C2×C6).33D8 = C6.D16 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).33D8 | 192,50 |
(C2×C6).34D8 = C6.Q32 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).34D8 | 192,51 |
(C2×C6).35D8 = C12.C42 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).35D8 | 192,88 |
(C2×C6).36D8 = D8⋊1Dic3 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).36D8 | 192,121 |
(C2×C6).37D8 = C6.5Q32 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).37D8 | 192,123 |
(C2×C6).38D8 = C2×C6.Q16 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).38D8 | 192,521 |
(C2×C6).39D8 = C2×C6.D8 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).39D8 | 192,524 |
(C2×C6).40D8 = (C2×C6).40D8 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).40D8 | 192,526 |
(C2×C6).41D8 = C2×C3⋊D16 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).41D8 | 192,705 |
(C2×C6).42D8 = D8.D6 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).42D8 | 192,706 |
(C2×C6).43D8 = C2×D8.S3 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).43D8 | 192,707 |
(C2×C6).44D8 = C2×C8.6D6 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).44D8 | 192,737 |
(C2×C6).45D8 = C24.27C23 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 96 | 4 | (C2xC6).45D8 | 192,738 |
(C2×C6).46D8 = C2×C3⋊Q32 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).46D8 | 192,739 |
(C2×C6).47D8 = C2×D4⋊Dic3 | φ: D8/D4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).47D8 | 192,773 |
(C2×C6).48D8 = C3×C22.4Q16 | central extension (φ=1) | 192 | | (C2xC6).48D8 | 192,146 |
(C2×C6).49D8 = C3×C2.D16 | central extension (φ=1) | 96 | | (C2xC6).49D8 | 192,163 |
(C2×C6).50D8 = C3×C2.Q32 | central extension (φ=1) | 192 | | (C2xC6).50D8 | 192,164 |
(C2×C6).51D8 = C3×C16⋊3C4 | central extension (φ=1) | 192 | | (C2xC6).51D8 | 192,172 |
(C2×C6).52D8 = C3×C16⋊4C4 | central extension (φ=1) | 192 | | (C2xC6).52D8 | 192,173 |
(C2×C6).53D8 = C6×D4⋊C4 | central extension (φ=1) | 96 | | (C2xC6).53D8 | 192,847 |
(C2×C6).54D8 = C6×C2.D8 | central extension (φ=1) | 192 | | (C2xC6).54D8 | 192,859 |
(C2×C6).55D8 = C6×D16 | central extension (φ=1) | 96 | | (C2xC6).55D8 | 192,938 |
(C2×C6).56D8 = C6×SD32 | central extension (φ=1) | 96 | | (C2xC6).56D8 | 192,939 |
(C2×C6).57D8 = C6×Q32 | central extension (φ=1) | 192 | | (C2xC6).57D8 | 192,940 |