Extensions 1→N→G→Q→1 with N=C2×C6 and Q=D8

Direct product G=N×Q with N=C2×C6 and Q=D8
dρLabelID
C2×C6×D896C2xC6xD8192,1458

Semidirect products G=N:Q with N=C2×C6 and Q=D8
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1D8 = D1213D4φ: D8/C4C22 ⊆ Aut C2×C648(C2xC6):1D8192,291
(C2×C6)⋊2D8 = D1216D4φ: D8/C4C22 ⊆ Aut C2×C648(C2xC6):2D8192,595
(C2×C6)⋊3D8 = C3⋊C822D4φ: D8/C4C22 ⊆ Aut C2×C696(C2xC6):3D8192,597
(C2×C6)⋊4D8 = C3×C87D4φ: D8/C8C2 ⊆ Aut C2×C696(C2xC6):4D8192,899
(C2×C6)⋊5D8 = C2429D4φ: D8/C8C2 ⊆ Aut C2×C696(C2xC6):5D8192,674
(C2×C6)⋊6D8 = C22×D24φ: D8/C8C2 ⊆ Aut C2×C696(C2xC6):6D8192,1299
(C2×C6)⋊7D8 = C3×C22⋊D8φ: D8/D4C2 ⊆ Aut C2×C648(C2xC6):7D8192,880
(C2×C6)⋊8D8 = (C2×C6)⋊8D8φ: D8/D4C2 ⊆ Aut C2×C648(C2xC6):8D8192,776
(C2×C6)⋊9D8 = C22×D4⋊S3φ: D8/D4C2 ⊆ Aut C2×C696(C2xC6):9D8192,1351

Non-split extensions G=N.Q with N=C2×C6 and Q=D8
extensionφ:Q→Aut NdρLabelID
(C2×C6).1D8 = C22.2D24φ: D8/C4C22 ⊆ Aut C2×C648(C2xC6).1D8192,29
(C2×C6).2D8 = D242C4φ: D8/C4C22 ⊆ Aut C2×C6484(C2xC6).2D8192,77
(C2×C6).3D8 = (C6×D4)⋊C4φ: D8/C4C22 ⊆ Aut C2×C648(C2xC6).3D8192,96
(C2×C6).4D8 = D82Dic3φ: D8/C4C22 ⊆ Aut C2×C6484(C2xC6).4D8192,125
(C2×C6).5D8 = C22.D24φ: D8/C4C22 ⊆ Aut C2×C696(C2xC6).5D8192,295
(C2×C6).6D8 = C16⋊D6φ: D8/C4C22 ⊆ Aut C2×C6484+(C2xC6).6D8192,467
(C2×C6).7D8 = C16.D6φ: D8/C4C22 ⊆ Aut C2×C6964-(C2xC6).7D8192,468
(C2×C6).8D8 = (C2×C6).D8φ: D8/C4C22 ⊆ Aut C2×C696(C2xC6).8D8192,592
(C2×C6).9D8 = Q16⋊D6φ: D8/C4C22 ⊆ Aut C2×C6484+(C2xC6).9D8192,752
(C2×C6).10D8 = Q16.D6φ: D8/C4C22 ⊆ Aut C2×C6964(C2xC6).10D8192,753
(C2×C6).11D8 = D8.9D6φ: D8/C4C22 ⊆ Aut C2×C6964-(C2xC6).11D8192,754
(C2×C6).12D8 = C3×C4○D16φ: D8/C8C2 ⊆ Aut C2×C6962(C2xC6).12D8192,941
(C2×C6).13D8 = C2.Dic24φ: D8/C8C2 ⊆ Aut C2×C6192(C2xC6).13D8192,62
(C2×C6).14D8 = C485C4φ: D8/C8C2 ⊆ Aut C2×C6192(C2xC6).14D8192,63
(C2×C6).15D8 = C486C4φ: D8/C8C2 ⊆ Aut C2×C6192(C2xC6).15D8192,64
(C2×C6).16D8 = C2.D48φ: D8/C8C2 ⊆ Aut C2×C696(C2xC6).16D8192,68
(C2×C6).17D8 = C12.9C42φ: D8/C8C2 ⊆ Aut C2×C6192(C2xC6).17D8192,110
(C2×C6).18D8 = C2×D48φ: D8/C8C2 ⊆ Aut C2×C696(C2xC6).18D8192,461
(C2×C6).19D8 = C2×C48⋊C2φ: D8/C8C2 ⊆ Aut C2×C696(C2xC6).19D8192,462
(C2×C6).20D8 = D487C2φ: D8/C8C2 ⊆ Aut C2×C6962(C2xC6).20D8192,463
(C2×C6).21D8 = C2×Dic24φ: D8/C8C2 ⊆ Aut C2×C6192(C2xC6).21D8192,464
(C2×C6).22D8 = C2×C241C4φ: D8/C8C2 ⊆ Aut C2×C6192(C2xC6).22D8192,664
(C2×C6).23D8 = C2×C2.D24φ: D8/C8C2 ⊆ Aut C2×C696(C2xC6).23D8192,671
(C2×C6).24D8 = C3×C22.SD16φ: D8/D4C2 ⊆ Aut C2×C648(C2xC6).24D8192,133
(C2×C6).25D8 = C3×D82C4φ: D8/D4C2 ⊆ Aut C2×C6484(C2xC6).25D8192,166
(C2×C6).26D8 = C3×C22.D8φ: D8/D4C2 ⊆ Aut C2×C696(C2xC6).26D8192,913
(C2×C6).27D8 = C3×C16⋊C22φ: D8/D4C2 ⊆ Aut C2×C6484(C2xC6).27D8192,942
(C2×C6).28D8 = C3×Q32⋊C2φ: D8/D4C2 ⊆ Aut C2×C6964(C2xC6).28D8192,943
(C2×C6).29D8 = C6.C4≀C2φ: D8/D4C2 ⊆ Aut C2×C648(C2xC6).29D8192,10
(C2×C6).30D8 = D248C4φ: D8/D4C2 ⊆ Aut C2×C6484(C2xC6).30D8192,47
(C2×C6).31D8 = C6.6D16φ: D8/D4C2 ⊆ Aut C2×C6192(C2xC6).31D8192,48
(C2×C6).32D8 = C6.SD32φ: D8/D4C2 ⊆ Aut C2×C6192(C2xC6).32D8192,49
(C2×C6).33D8 = C6.D16φ: D8/D4C2 ⊆ Aut C2×C696(C2xC6).33D8192,50
(C2×C6).34D8 = C6.Q32φ: D8/D4C2 ⊆ Aut C2×C6192(C2xC6).34D8192,51
(C2×C6).35D8 = C12.C42φ: D8/D4C2 ⊆ Aut C2×C6192(C2xC6).35D8192,88
(C2×C6).36D8 = D81Dic3φ: D8/D4C2 ⊆ Aut C2×C696(C2xC6).36D8192,121
(C2×C6).37D8 = C6.5Q32φ: D8/D4C2 ⊆ Aut C2×C6192(C2xC6).37D8192,123
(C2×C6).38D8 = C2×C6.Q16φ: D8/D4C2 ⊆ Aut C2×C6192(C2xC6).38D8192,521
(C2×C6).39D8 = C2×C6.D8φ: D8/D4C2 ⊆ Aut C2×C696(C2xC6).39D8192,524
(C2×C6).40D8 = (C2×C6).40D8φ: D8/D4C2 ⊆ Aut C2×C696(C2xC6).40D8192,526
(C2×C6).41D8 = C2×C3⋊D16φ: D8/D4C2 ⊆ Aut C2×C696(C2xC6).41D8192,705
(C2×C6).42D8 = D8.D6φ: D8/D4C2 ⊆ Aut C2×C6484(C2xC6).42D8192,706
(C2×C6).43D8 = C2×D8.S3φ: D8/D4C2 ⊆ Aut C2×C696(C2xC6).43D8192,707
(C2×C6).44D8 = C2×C8.6D6φ: D8/D4C2 ⊆ Aut C2×C696(C2xC6).44D8192,737
(C2×C6).45D8 = C24.27C23φ: D8/D4C2 ⊆ Aut C2×C6964(C2xC6).45D8192,738
(C2×C6).46D8 = C2×C3⋊Q32φ: D8/D4C2 ⊆ Aut C2×C6192(C2xC6).46D8192,739
(C2×C6).47D8 = C2×D4⋊Dic3φ: D8/D4C2 ⊆ Aut C2×C696(C2xC6).47D8192,773
(C2×C6).48D8 = C3×C22.4Q16central extension (φ=1)192(C2xC6).48D8192,146
(C2×C6).49D8 = C3×C2.D16central extension (φ=1)96(C2xC6).49D8192,163
(C2×C6).50D8 = C3×C2.Q32central extension (φ=1)192(C2xC6).50D8192,164
(C2×C6).51D8 = C3×C163C4central extension (φ=1)192(C2xC6).51D8192,172
(C2×C6).52D8 = C3×C164C4central extension (φ=1)192(C2xC6).52D8192,173
(C2×C6).53D8 = C6×D4⋊C4central extension (φ=1)96(C2xC6).53D8192,847
(C2×C6).54D8 = C6×C2.D8central extension (φ=1)192(C2xC6).54D8192,859
(C2×C6).55D8 = C6×D16central extension (φ=1)96(C2xC6).55D8192,938
(C2×C6).56D8 = C6×SD32central extension (φ=1)96(C2xC6).56D8192,939
(C2×C6).57D8 = C6×Q32central extension (φ=1)192(C2xC6).57D8192,940

׿
×
𝔽