Copied to
clipboard

G = D8.D6order 192 = 26·3

1st non-split extension by D8 of D6 acting via D6/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8.6D6, C24.34D4, C12.21D8, D2414C22, C24.24C23, Dic1211C22, (C2×D8)⋊7S3, (C6×D8)⋊1C2, C4○D242C2, C3⋊D165C2, C3⋊C163C22, D8.S35C2, (C2×C6).42D8, (C2×C8).83D6, C6.63(C2×D8), C34(C16⋊C22), C8.2(C3⋊D4), C12.C82C2, C4.17(D4⋊S3), (C2×C12).180D4, C12.160(C2×D4), C8.30(C22×S3), (C3×D8).6C22, (C2×C24).31C22, C22.10(D4⋊S3), C4.2(C2×C3⋊D4), C2.18(C2×D4⋊S3), (C2×C4).79(C3⋊D4), SmallGroup(192,706)

Series: Derived Chief Lower central Upper central

C1C24 — D8.D6
C1C3C6C12C24D24C4○D24 — D8.D6
C3C6C12C24 — D8.D6
C1C2C2×C4C2×C8C2×D8

Generators and relations for D8.D6
 G = < a,b,c,d | a8=b2=1, c6=d2=a4, bab=dad-1=a-1, ac=ca, cbc-1=a4b, dbd-1=ab, dcd-1=c5 >

Subgroups: 312 in 90 conjugacy classes, 35 normal (25 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, C2×C6, C2×C6, C16, C2×C8, D8, D8, SD16, Q16, C2×D4, C4○D4, C24, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, C22×C6, M5(2), D16, SD32, C2×D8, C4○D8, C3⋊C16, C24⋊C2, D24, Dic12, C2×C24, C3×D8, C3×D8, C4○D12, C6×D4, C16⋊C22, C12.C8, C3⋊D16, D8.S3, C4○D24, C6×D8, D8.D6
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C3⋊D4, C22×S3, C2×D8, D4⋊S3, C2×C3⋊D4, C16⋊C22, C2×D4⋊S3, D8.D6

Character table of D8.D6

 class 12A2B2C2D2E34A4B4C6A6B6C6D6E6F6G8A8B8C12A12B16A16B16C16D24A24B24C24D
 size 112882422224222888822444121212124444
ρ1111111111111111111111111111111    trivial
ρ2111-1-111111111-1-1-1-111111-1-1-1-11111    linear of order 2
ρ3111-1-1-1111-1111-1-1-1-11111111111111    linear of order 2
ρ411111-1111-1111111111111-1-1-1-11111    linear of order 2
ρ511-1-11-11-1111-1-1-111-111-11-1-111-1-11-11    linear of order 2
ρ611-11-1-11-1111-1-11-1-1111-11-11-1-11-11-11    linear of order 2
ρ711-11-111-11-11-1-11-1-1111-11-1-111-1-11-11    linear of order 2
ρ811-1-1111-11-11-1-1-111-111-11-11-1-11-11-11    linear of order 2
ρ9222220-1220-1-1-1-1-1-1-1222-1-10000-1-1-1-1    orthogonal lifted from S3
ρ1022-2-220-1-220-1111-1-1122-2-1100001-11-1    orthogonal lifted from D6
ρ1122-22-20-1-220-111-111-122-2-1100001-11-1    orthogonal lifted from D6
ρ12222-2-20-1220-1-1-11111222-1-10000-1-1-1-1    orthogonal lifted from D6
ρ1322200022202220000-2-2-2220000-2-2-2-2    orthogonal lifted from D4
ρ1422-20002-2202-2-20000-2-222-200002-22-2    orthogonal lifted from D4
ρ1522-200022-202-2-20000000-22-22-220000    orthogonal lifted from D8
ρ1622-200022-202-2-20000000-222-22-20000    orthogonal lifted from D8
ρ172220002-2-202220000000-2-222-2-20000    orthogonal lifted from D8
ρ182220002-2-202220000000-2-2-2-2220000    orthogonal lifted from D8
ρ1922-2000-1-220-111--3--3-3-3-2-22-110000-11-11    complex lifted from C3⋊D4
ρ20222000-1220-1-1-1--3-3--3-3-2-2-2-1-100001111    complex lifted from C3⋊D4
ρ21222000-1220-1-1-1-3--3-3--3-2-2-2-1-100001111    complex lifted from C3⋊D4
ρ2222-2000-1-220-111-3-3--3--3-2-22-110000-11-11    complex lifted from C3⋊D4
ρ2344-4000-24-40-22200000002-200000000    orthogonal lifted from D4⋊S3, Schur index 2
ρ24444000-2-4-40-2-2-200000002200000000    orthogonal lifted from D4⋊S3, Schur index 2
ρ254-400004000-4000000-222200000000-22022    orthogonal lifted from C16⋊C22
ρ264-400004000-400000022-2200000000220-22    orthogonal lifted from C16⋊C22
ρ274-40000-200022-3-2-3000022-220000000-6-2--62    complex faithful
ρ284-40000-20002-2-32-30000-22220000000-62--6-2    complex faithful
ρ294-40000-20002-2-32-3000022-220000000--6-2-62    complex faithful
ρ304-40000-200022-3-2-30000-22220000000--62-6-2    complex faithful

Smallest permutation representation of D8.D6
On 48 points
Generators in S48
(1 22 10 19 7 16 4 13)(2 23 11 20 8 17 5 14)(3 24 12 21 9 18 6 15)(25 37 28 40 31 43 34 46)(26 38 29 41 32 44 35 47)(27 39 30 42 33 45 36 48)
(1 13)(2 20)(3 15)(4 22)(5 17)(6 24)(7 19)(8 14)(9 21)(10 16)(11 23)(12 18)(25 34)(26 29)(27 36)(28 31)(30 33)(32 35)(37 43)(39 45)(41 47)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 34 7 28)(2 27 8 33)(3 32 9 26)(4 25 10 31)(5 30 11 36)(6 35 12 29)(13 46 19 40)(14 39 20 45)(15 44 21 38)(16 37 22 43)(17 42 23 48)(18 47 24 41)

G:=sub<Sym(48)| (1,22,10,19,7,16,4,13)(2,23,11,20,8,17,5,14)(3,24,12,21,9,18,6,15)(25,37,28,40,31,43,34,46)(26,38,29,41,32,44,35,47)(27,39,30,42,33,45,36,48), (1,13)(2,20)(3,15)(4,22)(5,17)(6,24)(7,19)(8,14)(9,21)(10,16)(11,23)(12,18)(25,34)(26,29)(27,36)(28,31)(30,33)(32,35)(37,43)(39,45)(41,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,34,7,28)(2,27,8,33)(3,32,9,26)(4,25,10,31)(5,30,11,36)(6,35,12,29)(13,46,19,40)(14,39,20,45)(15,44,21,38)(16,37,22,43)(17,42,23,48)(18,47,24,41)>;

G:=Group( (1,22,10,19,7,16,4,13)(2,23,11,20,8,17,5,14)(3,24,12,21,9,18,6,15)(25,37,28,40,31,43,34,46)(26,38,29,41,32,44,35,47)(27,39,30,42,33,45,36,48), (1,13)(2,20)(3,15)(4,22)(5,17)(6,24)(7,19)(8,14)(9,21)(10,16)(11,23)(12,18)(25,34)(26,29)(27,36)(28,31)(30,33)(32,35)(37,43)(39,45)(41,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,34,7,28)(2,27,8,33)(3,32,9,26)(4,25,10,31)(5,30,11,36)(6,35,12,29)(13,46,19,40)(14,39,20,45)(15,44,21,38)(16,37,22,43)(17,42,23,48)(18,47,24,41) );

G=PermutationGroup([[(1,22,10,19,7,16,4,13),(2,23,11,20,8,17,5,14),(3,24,12,21,9,18,6,15),(25,37,28,40,31,43,34,46),(26,38,29,41,32,44,35,47),(27,39,30,42,33,45,36,48)], [(1,13),(2,20),(3,15),(4,22),(5,17),(6,24),(7,19),(8,14),(9,21),(10,16),(11,23),(12,18),(25,34),(26,29),(27,36),(28,31),(30,33),(32,35),(37,43),(39,45),(41,47)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,34,7,28),(2,27,8,33),(3,32,9,26),(4,25,10,31),(5,30,11,36),(6,35,12,29),(13,46,19,40),(14,39,20,45),(15,44,21,38),(16,37,22,43),(17,42,23,48),(18,47,24,41)]])

Matrix representation of D8.D6 in GL4(𝔽7) generated by

0255
3565
1155
6143
,
4514
1032
1125
0001
,
0116
2514
1461
2223
,
5304
2514
5554
6316
G:=sub<GL(4,GF(7))| [0,3,1,6,2,5,1,1,5,6,5,4,5,5,5,3],[4,1,1,0,5,0,1,0,1,3,2,0,4,2,5,1],[0,2,1,2,1,5,4,2,1,1,6,2,6,4,1,3],[5,2,5,6,3,5,5,3,0,1,5,1,4,4,4,6] >;

D8.D6 in GAP, Magma, Sage, TeX

D_8.D_6
% in TeX

G:=Group("D8.D6");
// GroupNames label

G:=SmallGroup(192,706);
// by ID

G=gap.SmallGroup(192,706);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,254,387,675,185,192,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=1,c^6=d^2=a^4,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^4*b,d*b*d^-1=a*b,d*c*d^-1=c^5>;
// generators/relations

Export

Character table of D8.D6 in TeX

׿
×
𝔽