Extensions 1→N→G→Q→1 with N=C2 and Q=S3×SD16

Direct product G=N×Q with N=C2 and Q=S3×SD16
dρLabelID
C2×S3×SD1648C2xS3xSD16192,1317


Non-split extensions G=N.Q with N=C2 and Q=S3×SD16
extensionφ:Q→Aut NdρLabelID
C2.1(S3×SD16) = Dic36SD16central extension (φ=1)96C2.1(S3xSD16)192,317
C2.2(S3×SD16) = S3×D4⋊C4central extension (φ=1)48C2.2(S3xSD16)192,328
C2.3(S3×SD16) = Dic37SD16central extension (φ=1)96C2.3(S3xSD16)192,347
C2.4(S3×SD16) = S3×Q8⋊C4central extension (φ=1)96C2.4(S3xSD16)192,360
C2.5(S3×SD16) = Dic38SD16central extension (φ=1)96C2.5(S3xSD16)192,411
C2.6(S3×SD16) = S3×C4.Q8central extension (φ=1)96C2.6(S3xSD16)192,418
C2.7(S3×SD16) = Dic3×SD16central extension (φ=1)96C2.7(S3xSD16)192,720
C2.8(S3×SD16) = Dic3.SD16central stem extension (φ=1)96C2.8(S3xSD16)192,319
C2.9(S3×SD16) = D4⋊Dic6central stem extension (φ=1)96C2.9(S3xSD16)192,320
C2.10(S3×SD16) = Dic62D4central stem extension (φ=1)96C2.10(S3xSD16)192,321
C2.11(S3×SD16) = D65SD16central stem extension (φ=1)48C2.11(S3xSD16)192,335
C2.12(S3×SD16) = D6.SD16central stem extension (φ=1)96C2.12(S3xSD16)192,336
C2.13(S3×SD16) = D6⋊SD16central stem extension (φ=1)96C2.13(S3xSD16)192,337
C2.14(S3×SD16) = Q82Dic6central stem extension (φ=1)192C2.14(S3xSD16)192,350
C2.15(S3×SD16) = Dic3.1Q16central stem extension (φ=1)192C2.15(S3xSD16)192,351
C2.16(S3×SD16) = D6.1SD16central stem extension (φ=1)96C2.16(S3xSD16)192,364
C2.17(S3×SD16) = Q83D12central stem extension (φ=1)96C2.17(S3xSD16)192,365
C2.18(S3×SD16) = D62SD16central stem extension (φ=1)96C2.18(S3xSD16)192,366
C2.19(S3×SD16) = Dic3⋊SD16central stem extension (φ=1)96C2.19(S3xSD16)192,377
C2.20(S3×SD16) = Dic6⋊Q8central stem extension (φ=1)192C2.20(S3xSD16)192,413
C2.21(S3×SD16) = C245Q8central stem extension (φ=1)192C2.21(S3xSD16)192,414
C2.22(S3×SD16) = D6.2SD16central stem extension (φ=1)96C2.22(S3xSD16)192,421
C2.23(S3×SD16) = D6.4SD16central stem extension (φ=1)96C2.23(S3xSD16)192,422
C2.24(S3×SD16) = C88D12central stem extension (φ=1)96C2.24(S3xSD16)192,423
C2.25(S3×SD16) = D12⋊Q8central stem extension (φ=1)96C2.25(S3xSD16)192,429
C2.26(S3×SD16) = Dic33SD16central stem extension (φ=1)96C2.26(S3xSD16)192,721
C2.27(S3×SD16) = Dic35SD16central stem extension (φ=1)96C2.27(S3xSD16)192,722
C2.28(S3×SD16) = D66SD16central stem extension (φ=1)48C2.28(S3xSD16)192,728
C2.29(S3×SD16) = D68SD16central stem extension (φ=1)96C2.29(S3xSD16)192,729
C2.30(S3×SD16) = C2414D4central stem extension (φ=1)96C2.30(S3xSD16)192,730
C2.31(S3×SD16) = C2415D4central stem extension (φ=1)96C2.31(S3xSD16)192,734

׿
×
𝔽