Extensions 1→N→G→Q→1 with N=C12 and Q=D10

Direct product G=N×Q with N=C12 and Q=D10
dρLabelID
D5×C2×C12120D5xC2xC12240,156

Semidirect products G=N:Q with N=C12 and Q=D10
extensionφ:Q→Aut NdρLabelID
C121D10 = S3×D20φ: D10/C5C22 ⊆ Aut C12604+C12:1D10240,137
C122D10 = C20⋊D6φ: D10/C5C22 ⊆ Aut C12604C12:2D10240,138
C123D10 = D4×D15φ: D10/C5C22 ⊆ Aut C12604+C12:3D10240,179
C124D10 = D5×D12φ: D10/D5C2 ⊆ Aut C12604+C12:4D10240,136
C125D10 = C4×S3×D5φ: D10/D5C2 ⊆ Aut C12604C12:5D10240,135
C126D10 = C3×D4×D5φ: D10/D5C2 ⊆ Aut C12604C12:6D10240,159
C127D10 = C2×D60φ: D10/C10C2 ⊆ Aut C12120C12:7D10240,177
C128D10 = C2×C4×D15φ: D10/C10C2 ⊆ Aut C12120C12:8D10240,176
C129D10 = C6×D20φ: D10/C10C2 ⊆ Aut C12120C12:9D10240,157

Non-split extensions G=N.Q with N=C12 and Q=D10
extensionφ:Q→Aut NdρLabelID
C12.1D10 = C15⋊D8φ: D10/C5C22 ⊆ Aut C121204C12.1D10240,13
C12.2D10 = C3⋊D40φ: D10/C5C22 ⊆ Aut C121204+C12.2D10240,14
C12.3D10 = C30.D4φ: D10/C5C22 ⊆ Aut C121204C12.3D10240,16
C12.4D10 = C20.D6φ: D10/C5C22 ⊆ Aut C121204C12.4D10240,17
C12.5D10 = C6.D20φ: D10/C5C22 ⊆ Aut C121204-C12.5D10240,18
C12.6D10 = C15⋊SD16φ: D10/C5C22 ⊆ Aut C121204+C12.6D10240,19
C12.7D10 = C15⋊Q16φ: D10/C5C22 ⊆ Aut C122404C12.7D10240,22
C12.8D10 = C3⋊Dic20φ: D10/C5C22 ⊆ Aut C122404-C12.8D10240,23
C12.9D10 = D4⋊D15φ: D10/C5C22 ⊆ Aut C121204+C12.9D10240,76
C12.10D10 = D4.D15φ: D10/C5C22 ⊆ Aut C121204-C12.10D10240,77
C12.11D10 = Q82D15φ: D10/C5C22 ⊆ Aut C121204+C12.11D10240,78
C12.12D10 = C157Q16φ: D10/C5C22 ⊆ Aut C122404-C12.12D10240,79
C12.13D10 = D205S3φ: D10/C5C22 ⊆ Aut C121204-C12.13D10240,126
C12.14D10 = D20⋊S3φ: D10/C5C22 ⊆ Aut C121204C12.14D10240,127
C12.15D10 = S3×Dic10φ: D10/C5C22 ⊆ Aut C121204-C12.15D10240,128
C12.16D10 = D12⋊D5φ: D10/C5C22 ⊆ Aut C121204C12.16D10240,129
C12.17D10 = D60⋊C2φ: D10/C5C22 ⊆ Aut C121204+C12.17D10240,130
C12.18D10 = D15⋊Q8φ: D10/C5C22 ⊆ Aut C121204C12.18D10240,131
C12.19D10 = D42D15φ: D10/C5C22 ⊆ Aut C121204-C12.19D10240,180
C12.20D10 = Q8×D15φ: D10/C5C22 ⊆ Aut C121204-C12.20D10240,181
C12.21D10 = Q83D15φ: D10/C5C22 ⊆ Aut C121204+C12.21D10240,182
C12.22D10 = C5⋊D24φ: D10/D5C2 ⊆ Aut C121204+C12.22D10240,15
C12.23D10 = D12.D5φ: D10/D5C2 ⊆ Aut C121204-C12.23D10240,20
C12.24D10 = Dic6⋊D5φ: D10/D5C2 ⊆ Aut C121204+C12.24D10240,21
C12.25D10 = C5⋊Dic12φ: D10/D5C2 ⊆ Aut C122404-C12.25D10240,24
C12.26D10 = D5×Dic6φ: D10/D5C2 ⊆ Aut C121204-C12.26D10240,125
C12.27D10 = D125D5φ: D10/D5C2 ⊆ Aut C121204-C12.27D10240,133
C12.28D10 = C12.28D10φ: D10/D5C2 ⊆ Aut C121204+C12.28D10240,134
C12.29D10 = D5×C3⋊C8φ: D10/D5C2 ⊆ Aut C121204C12.29D10240,7
C12.30D10 = S3×C52C8φ: D10/D5C2 ⊆ Aut C121204C12.30D10240,8
C12.31D10 = D152C8φ: D10/D5C2 ⊆ Aut C121204C12.31D10240,9
C12.32D10 = C20.32D6φ: D10/D5C2 ⊆ Aut C121204C12.32D10240,10
C12.33D10 = D6.Dic5φ: D10/D5C2 ⊆ Aut C121204C12.33D10240,11
C12.34D10 = D30.5C4φ: D10/D5C2 ⊆ Aut C121204C12.34D10240,12
C12.35D10 = D6.D10φ: D10/D5C2 ⊆ Aut C121204C12.35D10240,132
C12.36D10 = C3×D4⋊D5φ: D10/D5C2 ⊆ Aut C121204C12.36D10240,44
C12.37D10 = C3×D4.D5φ: D10/D5C2 ⊆ Aut C121204C12.37D10240,45
C12.38D10 = C3×Q8⋊D5φ: D10/D5C2 ⊆ Aut C121204C12.38D10240,46
C12.39D10 = C3×C5⋊Q16φ: D10/D5C2 ⊆ Aut C122404C12.39D10240,47
C12.40D10 = C3×D42D5φ: D10/D5C2 ⊆ Aut C121204C12.40D10240,160
C12.41D10 = C3×Q8×D5φ: D10/D5C2 ⊆ Aut C121204C12.41D10240,161
C12.42D10 = C3×Q82D5φ: D10/D5C2 ⊆ Aut C121204C12.42D10240,162
C12.43D10 = C24⋊D5φ: D10/C10C2 ⊆ Aut C121202C12.43D10240,67
C12.44D10 = D120φ: D10/C10C2 ⊆ Aut C121202+C12.44D10240,68
C12.45D10 = Dic60φ: D10/C10C2 ⊆ Aut C122402-C12.45D10240,69
C12.46D10 = C2×Dic30φ: D10/C10C2 ⊆ Aut C12240C12.46D10240,175
C12.47D10 = D6011C2φ: D10/C10C2 ⊆ Aut C121202C12.47D10240,178
C12.48D10 = C8×D15φ: D10/C10C2 ⊆ Aut C121202C12.48D10240,65
C12.49D10 = C40⋊S3φ: D10/C10C2 ⊆ Aut C121202C12.49D10240,66
C12.50D10 = C2×C153C8φ: D10/C10C2 ⊆ Aut C12240C12.50D10240,70
C12.51D10 = C60.7C4φ: D10/C10C2 ⊆ Aut C121202C12.51D10240,71
C12.52D10 = C3×C40⋊C2φ: D10/C10C2 ⊆ Aut C121202C12.52D10240,35
C12.53D10 = C3×D40φ: D10/C10C2 ⊆ Aut C121202C12.53D10240,36
C12.54D10 = C3×Dic20φ: D10/C10C2 ⊆ Aut C122402C12.54D10240,37
C12.55D10 = C6×Dic10φ: D10/C10C2 ⊆ Aut C12240C12.55D10240,155
C12.56D10 = D5×C24central extension (φ=1)1202C12.56D10240,33
C12.57D10 = C3×C8⋊D5central extension (φ=1)1202C12.57D10240,34
C12.58D10 = C6×C52C8central extension (φ=1)240C12.58D10240,38
C12.59D10 = C3×C4.Dic5central extension (φ=1)1202C12.59D10240,39
C12.60D10 = C3×C4○D20central extension (φ=1)1202C12.60D10240,158

׿
×
𝔽