extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2×F5) = Dic3×F5 | φ: C2×F5/F5 → C2 ⊆ Aut C6 | 60 | 8- | C6.1(C2xF5) | 240,95 |
C6.2(C2×F5) = D6⋊F5 | φ: C2×F5/F5 → C2 ⊆ Aut C6 | 60 | 8+ | C6.2(C2xF5) | 240,96 |
C6.3(C2×F5) = Dic3⋊F5 | φ: C2×F5/F5 → C2 ⊆ Aut C6 | 60 | 8- | C6.3(C2xF5) | 240,97 |
C6.4(C2×F5) = S3×C5⋊C8 | φ: C2×F5/F5 → C2 ⊆ Aut C6 | 120 | 8- | C6.4(C2xF5) | 240,98 |
C6.5(C2×F5) = D15⋊C8 | φ: C2×F5/F5 → C2 ⊆ Aut C6 | 120 | 8+ | C6.5(C2xF5) | 240,99 |
C6.6(C2×F5) = D6.F5 | φ: C2×F5/F5 → C2 ⊆ Aut C6 | 120 | 8- | C6.6(C2xF5) | 240,100 |
C6.7(C2×F5) = Dic3.F5 | φ: C2×F5/F5 → C2 ⊆ Aut C6 | 120 | 8+ | C6.7(C2xF5) | 240,101 |
C6.8(C2×F5) = C60.C4 | φ: C2×F5/D10 → C2 ⊆ Aut C6 | 120 | 4 | C6.8(C2xF5) | 240,118 |
C6.9(C2×F5) = C12.F5 | φ: C2×F5/D10 → C2 ⊆ Aut C6 | 120 | 4 | C6.9(C2xF5) | 240,119 |
C6.10(C2×F5) = C4×C3⋊F5 | φ: C2×F5/D10 → C2 ⊆ Aut C6 | 60 | 4 | C6.10(C2xF5) | 240,120 |
C6.11(C2×F5) = C60⋊C4 | φ: C2×F5/D10 → C2 ⊆ Aut C6 | 60 | 4 | C6.11(C2xF5) | 240,121 |
C6.12(C2×F5) = C2×C15⋊C8 | φ: C2×F5/D10 → C2 ⊆ Aut C6 | 240 | | C6.12(C2xF5) | 240,122 |
C6.13(C2×F5) = C15⋊8M4(2) | φ: C2×F5/D10 → C2 ⊆ Aut C6 | 120 | 4 | C6.13(C2xF5) | 240,123 |
C6.14(C2×F5) = D10.D6 | φ: C2×F5/D10 → C2 ⊆ Aut C6 | 60 | 4 | C6.14(C2xF5) | 240,124 |
C6.15(C2×F5) = C3×D5⋊C8 | central extension (φ=1) | 120 | 4 | C6.15(C2xF5) | 240,111 |
C6.16(C2×F5) = C3×C4.F5 | central extension (φ=1) | 120 | 4 | C6.16(C2xF5) | 240,112 |
C6.17(C2×F5) = C12×F5 | central extension (φ=1) | 60 | 4 | C6.17(C2xF5) | 240,113 |
C6.18(C2×F5) = C3×C4⋊F5 | central extension (φ=1) | 60 | 4 | C6.18(C2xF5) | 240,114 |
C6.19(C2×F5) = C6×C5⋊C8 | central extension (φ=1) | 240 | | C6.19(C2xF5) | 240,115 |
C6.20(C2×F5) = C3×C22.F5 | central extension (φ=1) | 120 | 4 | C6.20(C2xF5) | 240,116 |
C6.21(C2×F5) = C3×C22⋊F5 | central extension (φ=1) | 60 | 4 | C6.21(C2xF5) | 240,117 |