Extensions 1→N→G→Q→1 with N=C6 and Q=C2×F5

Direct product G=N×Q with N=C6 and Q=C2×F5
dρLabelID
C2×C6×F560C2xC6xF5240,200

Semidirect products G=N:Q with N=C6 and Q=C2×F5
extensionφ:Q→Aut NdρLabelID
C61(C2×F5) = C2×S3×F5φ: C2×F5/F5C2 ⊆ Aut C6308+C6:1(C2xF5)240,195
C62(C2×F5) = C22×C3⋊F5φ: C2×F5/D10C2 ⊆ Aut C660C6:2(C2xF5)240,201

Non-split extensions G=N.Q with N=C6 and Q=C2×F5
extensionφ:Q→Aut NdρLabelID
C6.1(C2×F5) = Dic3×F5φ: C2×F5/F5C2 ⊆ Aut C6608-C6.1(C2xF5)240,95
C6.2(C2×F5) = D6⋊F5φ: C2×F5/F5C2 ⊆ Aut C6608+C6.2(C2xF5)240,96
C6.3(C2×F5) = Dic3⋊F5φ: C2×F5/F5C2 ⊆ Aut C6608-C6.3(C2xF5)240,97
C6.4(C2×F5) = S3×C5⋊C8φ: C2×F5/F5C2 ⊆ Aut C61208-C6.4(C2xF5)240,98
C6.5(C2×F5) = D15⋊C8φ: C2×F5/F5C2 ⊆ Aut C61208+C6.5(C2xF5)240,99
C6.6(C2×F5) = D6.F5φ: C2×F5/F5C2 ⊆ Aut C61208-C6.6(C2xF5)240,100
C6.7(C2×F5) = Dic3.F5φ: C2×F5/F5C2 ⊆ Aut C61208+C6.7(C2xF5)240,101
C6.8(C2×F5) = C60.C4φ: C2×F5/D10C2 ⊆ Aut C61204C6.8(C2xF5)240,118
C6.9(C2×F5) = C12.F5φ: C2×F5/D10C2 ⊆ Aut C61204C6.9(C2xF5)240,119
C6.10(C2×F5) = C4×C3⋊F5φ: C2×F5/D10C2 ⊆ Aut C6604C6.10(C2xF5)240,120
C6.11(C2×F5) = C60⋊C4φ: C2×F5/D10C2 ⊆ Aut C6604C6.11(C2xF5)240,121
C6.12(C2×F5) = C2×C15⋊C8φ: C2×F5/D10C2 ⊆ Aut C6240C6.12(C2xF5)240,122
C6.13(C2×F5) = C158M4(2)φ: C2×F5/D10C2 ⊆ Aut C61204C6.13(C2xF5)240,123
C6.14(C2×F5) = D10.D6φ: C2×F5/D10C2 ⊆ Aut C6604C6.14(C2xF5)240,124
C6.15(C2×F5) = C3×D5⋊C8central extension (φ=1)1204C6.15(C2xF5)240,111
C6.16(C2×F5) = C3×C4.F5central extension (φ=1)1204C6.16(C2xF5)240,112
C6.17(C2×F5) = C12×F5central extension (φ=1)604C6.17(C2xF5)240,113
C6.18(C2×F5) = C3×C4⋊F5central extension (φ=1)604C6.18(C2xF5)240,114
C6.19(C2×F5) = C6×C5⋊C8central extension (φ=1)240C6.19(C2xF5)240,115
C6.20(C2×F5) = C3×C22.F5central extension (φ=1)1204C6.20(C2xF5)240,116
C6.21(C2×F5) = C3×C22⋊F5central extension (φ=1)604C6.21(C2xF5)240,117

׿
×
𝔽