extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(S3×C6) = C3×C12.46D4 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).1(S3xC6) | 288,257 |
(C2×C4).2(S3×C6) = C3×C12.47D4 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).2(S3xC6) | 288,258 |
(C2×C4).3(S3×C6) = C3×C12.D4 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 24 | 4 | (C2xC4).3(S3xC6) | 288,267 |
(C2×C4).4(S3×C6) = C3×C12.10D4 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).4(S3xC6) | 288,270 |
(C2×C4).5(S3×C6) = C3×Dic3.D4 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).5(S3xC6) | 288,649 |
(C2×C4).6(S3×C6) = C3×Dic3⋊D4 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).6(S3xC6) | 288,655 |
(C2×C4).7(S3×C6) = C3×C23.21D6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).7(S3xC6) | 288,657 |
(C2×C4).8(S3×C6) = C3×C12⋊Q8 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).8(S3xC6) | 288,659 |
(C2×C4).9(S3×C6) = C3×D6.D4 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).9(S3xC6) | 288,665 |
(C2×C4).10(S3×C6) = C3×C12⋊D4 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).10(S3xC6) | 288,666 |
(C2×C4).11(S3×C6) = C3×D6⋊Q8 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).11(S3xC6) | 288,667 |
(C2×C4).12(S3×C6) = C3×C4⋊C4⋊S3 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).12(S3xC6) | 288,669 |
(C2×C4).13(S3×C6) = C3×C8⋊D6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).13(S3xC6) | 288,679 |
(C2×C4).14(S3×C6) = C3×C8.D6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).14(S3xC6) | 288,680 |
(C2×C4).15(S3×C6) = C3×D12⋊6C22 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 24 | 4 | (C2xC4).15(S3xC6) | 288,703 |
(C2×C4).16(S3×C6) = C3×C23.23D6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).16(S3xC6) | 288,706 |
(C2×C4).17(S3×C6) = C3×C23.14D6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).17(S3xC6) | 288,710 |
(C2×C4).18(S3×C6) = C3×Q8.11D6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).18(S3xC6) | 288,713 |
(C2×C4).19(S3×C6) = C3×Dic3⋊Q8 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).19(S3xC6) | 288,715 |
(C2×C4).20(S3×C6) = C3×D4⋊D6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).20(S3xC6) | 288,720 |
(C2×C4).21(S3×C6) = C3×Q8.14D6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).21(S3xC6) | 288,722 |
(C2×C4).22(S3×C6) = C3×Q8.15D6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).22(S3xC6) | 288,997 |
(C2×C4).23(S3×C6) = C3×Q8○D12 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).23(S3xC6) | 288,1000 |
(C2×C4).24(S3×C6) = C3×C23.16D6 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).24(S3xC6) | 288,648 |
(C2×C4).25(S3×C6) = C3×C23.8D6 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).25(S3xC6) | 288,650 |
(C2×C4).26(S3×C6) = C3×Dic3⋊4D4 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).26(S3xC6) | 288,652 |
(C2×C4).27(S3×C6) = C3×C23.9D6 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).27(S3xC6) | 288,654 |
(C2×C4).28(S3×C6) = C3×C23.11D6 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).28(S3xC6) | 288,656 |
(C2×C4).29(S3×C6) = C3×Dic3.Q8 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).29(S3xC6) | 288,660 |
(C2×C4).30(S3×C6) = C3×S3×C4⋊C4 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).30(S3xC6) | 288,662 |
(C2×C4).31(S3×C6) = C3×C4⋊C4⋊7S3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).31(S3xC6) | 288,663 |
(C2×C4).32(S3×C6) = C3×C6.Q16 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).32(S3xC6) | 288,241 |
(C2×C4).33(S3×C6) = C3×C12.Q8 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).33(S3xC6) | 288,242 |
(C2×C4).34(S3×C6) = C3×C6.D8 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).34(S3xC6) | 288,243 |
(C2×C4).35(S3×C6) = C3×C6.SD16 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).35(S3xC6) | 288,244 |
(C2×C4).36(S3×C6) = C3×C12.53D4 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).36(S3xC6) | 288,256 |
(C2×C4).37(S3×C6) = C3×D12⋊C4 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).37(S3xC6) | 288,259 |
(C2×C4).38(S3×C6) = C3×D4⋊Dic3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).38(S3xC6) | 288,266 |
(C2×C4).39(S3×C6) = C3×Q8⋊2Dic3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).39(S3xC6) | 288,269 |
(C2×C4).40(S3×C6) = C3×Q8⋊3Dic3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).40(S3xC6) | 288,271 |
(C2×C4).41(S3×C6) = C3×Dic6⋊C4 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).41(S3xC6) | 288,658 |
(C2×C4).42(S3×C6) = C3×C4.Dic6 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).42(S3xC6) | 288,661 |
(C2×C4).43(S3×C6) = C3×Dic3⋊5D4 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).43(S3xC6) | 288,664 |
(C2×C4).44(S3×C6) = C3×C4.D12 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).44(S3xC6) | 288,668 |
(C2×C4).45(S3×C6) = C3×S3×M4(2) | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).45(S3xC6) | 288,677 |
(C2×C4).46(S3×C6) = C3×D12.C4 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).46(S3xC6) | 288,678 |
(C2×C4).47(S3×C6) = C6×D4⋊S3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).47(S3xC6) | 288,702 |
(C2×C4).48(S3×C6) = C6×D4.S3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).48(S3xC6) | 288,704 |
(C2×C4).49(S3×C6) = C3×D4×Dic3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).49(S3xC6) | 288,705 |
(C2×C4).50(S3×C6) = C3×C23.12D6 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).50(S3xC6) | 288,707 |
(C2×C4).51(S3×C6) = C3×D6⋊3D4 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).51(S3xC6) | 288,709 |
(C2×C4).52(S3×C6) = C3×C12⋊3D4 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).52(S3xC6) | 288,711 |
(C2×C4).53(S3×C6) = C6×Q8⋊2S3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).53(S3xC6) | 288,712 |
(C2×C4).54(S3×C6) = C6×C3⋊Q16 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).54(S3xC6) | 288,714 |
(C2×C4).55(S3×C6) = C3×Q8×Dic3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).55(S3xC6) | 288,716 |
(C2×C4).56(S3×C6) = C3×D6⋊3Q8 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).56(S3xC6) | 288,717 |
(C2×C4).57(S3×C6) = C3×C12.23D4 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).57(S3xC6) | 288,718 |
(C2×C4).58(S3×C6) = C3×D4.Dic3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).58(S3xC6) | 288,719 |
(C2×C4).59(S3×C6) = C3×Q8.13D6 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).59(S3xC6) | 288,721 |
(C2×C4).60(S3×C6) = C6×D4⋊2S3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).60(S3xC6) | 288,993 |
(C2×C4).61(S3×C6) = S3×C6×Q8 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).61(S3xC6) | 288,995 |
(C2×C4).62(S3×C6) = C6×Q8⋊3S3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).62(S3xC6) | 288,996 |
(C2×C4).63(S3×C6) = C3×C12.6Q8 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).63(S3xC6) | 288,641 |
(C2×C4).64(S3×C6) = C3×C42⋊2S3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).64(S3xC6) | 288,643 |
(C2×C4).65(S3×C6) = C3×C42⋊7S3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).65(S3xC6) | 288,646 |
(C2×C4).66(S3×C6) = C3×C42⋊3S3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).66(S3xC6) | 288,647 |
(C2×C4).67(S3×C6) = C6×Dic3⋊C4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).67(S3xC6) | 288,694 |
(C2×C4).68(S3×C6) = C3×C23.28D6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).68(S3xC6) | 288,700 |
(C2×C4).69(S3×C6) = C3×C42⋊4S3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 24 | 2 | (C2xC4).69(S3xC6) | 288,239 |
(C2×C4).70(S3×C6) = C3×C2.Dic12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).70(S3xC6) | 288,250 |
(C2×C4).71(S3×C6) = C3×C8⋊Dic3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).71(S3xC6) | 288,251 |
(C2×C4).72(S3×C6) = C3×C24⋊1C4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).72(S3xC6) | 288,252 |
(C2×C4).73(S3×C6) = C3×C24.C4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 48 | 2 | (C2xC4).73(S3xC6) | 288,253 |
(C2×C4).74(S3×C6) = C3×C2.D24 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).74(S3xC6) | 288,255 |
(C2×C4).75(S3×C6) = C3×C12⋊2Q8 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).75(S3xC6) | 288,640 |
(C2×C4).76(S3×C6) = C3×C4⋊D12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).76(S3xC6) | 288,645 |
(C2×C4).77(S3×C6) = C3×C8○D12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 48 | 2 | (C2xC4).77(S3xC6) | 288,672 |
(C2×C4).78(S3×C6) = C6×C24⋊C2 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).78(S3xC6) | 288,673 |
(C2×C4).79(S3×C6) = C6×D24 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).79(S3xC6) | 288,674 |
(C2×C4).80(S3×C6) = C3×C4○D24 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 48 | 2 | (C2xC4).80(S3xC6) | 288,675 |
(C2×C4).81(S3×C6) = C6×Dic12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).81(S3xC6) | 288,676 |
(C2×C4).82(S3×C6) = C6×C4.Dic3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).82(S3xC6) | 288,692 |
(C2×C4).83(S3×C6) = C3×C12.48D4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).83(S3xC6) | 288,695 |
(C2×C4).84(S3×C6) = C6×C4⋊Dic3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).84(S3xC6) | 288,696 |
(C2×C4).85(S3×C6) = C3×C12⋊7D4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).85(S3xC6) | 288,701 |
(C2×C4).86(S3×C6) = C2×C6×Dic6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).86(S3xC6) | 288,988 |
(C2×C4).87(S3×C6) = C12×C3⋊C8 | central extension (φ=1) | 96 | | (C2xC4).87(S3xC6) | 288,236 |
(C2×C4).88(S3×C6) = C3×C42.S3 | central extension (φ=1) | 96 | | (C2xC4).88(S3xC6) | 288,237 |
(C2×C4).89(S3×C6) = C3×C12⋊C8 | central extension (φ=1) | 96 | | (C2xC4).89(S3xC6) | 288,238 |
(C2×C4).90(S3×C6) = Dic3×C24 | central extension (φ=1) | 96 | | (C2xC4).90(S3xC6) | 288,247 |
(C2×C4).91(S3×C6) = C3×Dic3⋊C8 | central extension (φ=1) | 96 | | (C2xC4).91(S3xC6) | 288,248 |
(C2×C4).92(S3×C6) = C3×C24⋊C4 | central extension (φ=1) | 96 | | (C2xC4).92(S3xC6) | 288,249 |
(C2×C4).93(S3×C6) = C3×D6⋊C8 | central extension (φ=1) | 96 | | (C2xC4).93(S3xC6) | 288,254 |
(C2×C4).94(S3×C6) = C3×C12.55D4 | central extension (φ=1) | 48 | | (C2xC4).94(S3xC6) | 288,264 |
(C2×C4).95(S3×C6) = C12×Dic6 | central extension (φ=1) | 96 | | (C2xC4).95(S3xC6) | 288,639 |
(C2×C4).96(S3×C6) = S3×C4×C12 | central extension (φ=1) | 96 | | (C2xC4).96(S3xC6) | 288,642 |
(C2×C4).97(S3×C6) = C12×D12 | central extension (φ=1) | 96 | | (C2xC4).97(S3xC6) | 288,644 |
(C2×C4).98(S3×C6) = S3×C2×C24 | central extension (φ=1) | 96 | | (C2xC4).98(S3xC6) | 288,670 |
(C2×C4).99(S3×C6) = C6×C8⋊S3 | central extension (φ=1) | 96 | | (C2xC4).99(S3xC6) | 288,671 |
(C2×C4).100(S3×C6) = C2×C6×C3⋊C8 | central extension (φ=1) | 96 | | (C2xC4).100(S3xC6) | 288,691 |
(C2×C4).101(S3×C6) = Dic3×C2×C12 | central extension (φ=1) | 96 | | (C2xC4).101(S3xC6) | 288,693 |
(C2×C4).102(S3×C6) = C3×C23.26D6 | central extension (φ=1) | 48 | | (C2xC4).102(S3xC6) | 288,697 |
(C2×C4).103(S3×C6) = C12×C3⋊D4 | central extension (φ=1) | 48 | | (C2xC4).103(S3xC6) | 288,699 |