extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic3)⋊1D6 = D6⋊4D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):1D6 | 288,570 |
(C2×Dic3)⋊2D6 = D6⋊5D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):2D6 | 288,571 |
(C2×Dic3)⋊3D6 = C62⋊4D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):3D6 | 288,624 |
(C2×Dic3)⋊4D6 = C62⋊5D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):4D6 | 288,625 |
(C2×Dic3)⋊5D6 = C62⋊8D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 24 | | (C2xDic3):5D6 | 288,629 |
(C2×Dic3)⋊6D6 = C62.125C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):6D6 | 288,631 |
(C2×Dic3)⋊7D6 = D12⋊13D6 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 24 | 8+ | (C2xDic3):7D6 | 288,962 |
(C2×Dic3)⋊8D6 = C32⋊2+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 24 | 4 | (C2xDic3):8D6 | 288,978 |
(C2×Dic3)⋊9D6 = S3×D6⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):9D6 | 288,568 |
(C2×Dic3)⋊10D6 = C62.91C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):10D6 | 288,569 |
(C2×Dic3)⋊11D6 = S3×C6.D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):11D6 | 288,616 |
(C2×Dic3)⋊12D6 = C62.116C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 24 | | (C2xDic3):12D6 | 288,622 |
(C2×Dic3)⋊13D6 = S3×D4⋊2S3 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | 8- | (C2xDic3):13D6 | 288,959 |
(C2×Dic3)⋊14D6 = Dic6⋊12D6 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 24 | 8+ | (C2xDic3):14D6 | 288,960 |
(C2×Dic3)⋊15D6 = C2×S3×C3⋊D4 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):15D6 | 288,976 |
(C2×Dic3)⋊16D6 = C2×Dic3⋊D6 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 24 | | (C2xDic3):16D6 | 288,977 |
(C2×Dic3)⋊17D6 = C2×D6⋊Dic3 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3):17D6 | 288,608 |
(C2×Dic3)⋊18D6 = C2×C6.D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):18D6 | 288,611 |
(C2×Dic3)⋊19D6 = C2×S3×D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):19D6 | 288,951 |
(C2×Dic3)⋊20D6 = S3×C4○D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 48 | 4 | (C2xDic3):20D6 | 288,953 |
(C2×Dic3)⋊21D6 = C2×D6.3D6 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):21D6 | 288,970 |
(C2×Dic3)⋊22D6 = C22×C3⋊D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):22D6 | 288,974 |
(C2×Dic3)⋊23D6 = S32×C2×C4 | φ: trivial image | 48 | | (C2xDic3):23D6 | 288,950 |
(C2×Dic3)⋊24D6 = C22×C6.D6 | φ: trivial image | 48 | | (C2xDic3):24D6 | 288,972 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic3).1D6 = C62.9C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).1D6 | 288,487 |
(C2×Dic3).2D6 = C62.10C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).2D6 | 288,488 |
(C2×Dic3).3D6 = Dic3.Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).3D6 | 288,493 |
(C2×Dic3).4D6 = C62.16C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).4D6 | 288,494 |
(C2×Dic3).5D6 = C62.17C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).5D6 | 288,495 |
(C2×Dic3).6D6 = C62.18C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).6D6 | 288,496 |
(C2×Dic3).7D6 = C62.20C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).7D6 | 288,498 |
(C2×Dic3).8D6 = D6⋊Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).8D6 | 288,499 |
(C2×Dic3).9D6 = C62.23C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).9D6 | 288,501 |
(C2×Dic3).10D6 = D6⋊6Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).10D6 | 288,504 |
(C2×Dic3).11D6 = C62.32C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).11D6 | 288,510 |
(C2×Dic3).12D6 = C62.33C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).12D6 | 288,511 |
(C2×Dic3).13D6 = C62.35C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).13D6 | 288,513 |
(C2×Dic3).14D6 = Dic3⋊Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).14D6 | 288,514 |
(C2×Dic3).15D6 = C62.37C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).15D6 | 288,515 |
(C2×Dic3).16D6 = C62.38C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).16D6 | 288,516 |
(C2×Dic3).17D6 = C62.39C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).17D6 | 288,517 |
(C2×Dic3).18D6 = C62.40C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).18D6 | 288,518 |
(C2×Dic3).19D6 = C12.30D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).19D6 | 288,519 |
(C2×Dic3).20D6 = C62.42C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).20D6 | 288,520 |
(C2×Dic3).21D6 = C62.43C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).21D6 | 288,521 |
(C2×Dic3).22D6 = Dic3⋊D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).22D6 | 288,534 |
(C2×Dic3).23D6 = C62.58C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).23D6 | 288,536 |
(C2×Dic3).24D6 = D6.D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).24D6 | 288,538 |
(C2×Dic3).25D6 = D6⋊2Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).25D6 | 288,541 |
(C2×Dic3).26D6 = C62.65C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).26D6 | 288,543 |
(C2×Dic3).27D6 = D6⋊3Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).27D6 | 288,544 |
(C2×Dic3).28D6 = C62.67C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).28D6 | 288,545 |
(C2×Dic3).29D6 = D6⋊4Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).29D6 | 288,547 |
(C2×Dic3).30D6 = D6⋊D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).30D6 | 288,554 |
(C2×Dic3).31D6 = C62.77C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).31D6 | 288,555 |
(C2×Dic3).32D6 = C12⋊7D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).32D6 | 288,557 |
(C2×Dic3).33D6 = C62.82C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).33D6 | 288,560 |
(C2×Dic3).34D6 = C62.85C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).34D6 | 288,563 |
(C2×Dic3).35D6 = C12⋊2D12 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).35D6 | 288,564 |
(C2×Dic3).36D6 = C12⋊3Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).36D6 | 288,566 |
(C2×Dic3).37D6 = C12⋊Dic6 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).37D6 | 288,567 |
(C2×Dic3).38D6 = C62.98C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).38D6 | 288,604 |
(C2×Dic3).39D6 = C62.100C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).39D6 | 288,606 |
(C2×Dic3).40D6 = C62.56D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).40D6 | 288,609 |
(C2×Dic3).41D6 = C62.57D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).41D6 | 288,610 |
(C2×Dic3).42D6 = C62⋊3Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).42D6 | 288,612 |
(C2×Dic3).43D6 = C62.60D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).43D6 | 288,614 |
(C2×Dic3).44D6 = C62.111C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).44D6 | 288,617 |
(C2×Dic3).45D6 = C62.113C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).45D6 | 288,619 |
(C2×Dic3).46D6 = C62.117C23 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).46D6 | 288,623 |
(C2×Dic3).47D6 = C62⋊7D4 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).47D6 | 288,628 |
(C2×Dic3).48D6 = C62⋊4Q8 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).48D6 | 288,630 |
(C2×Dic3).49D6 = D12.33D6 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | 4 | (C2xDic3).49D6 | 288,945 |
(C2×Dic3).50D6 = Dic6.24D6 | φ: D6/C3 → C22 ⊆ Out C2×Dic3 | 48 | 8- | (C2xDic3).50D6 | 288,957 |
(C2×Dic3).51D6 = Dic3⋊5Dic6 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).51D6 | 288,485 |
(C2×Dic3).52D6 = C62.8C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).52D6 | 288,486 |
(C2×Dic3).53D6 = C62.11C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).53D6 | 288,489 |
(C2×Dic3).54D6 = Dic3×Dic6 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).54D6 | 288,490 |
(C2×Dic3).55D6 = C62.13C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).55D6 | 288,491 |
(C2×Dic3).56D6 = C62.19C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).56D6 | 288,497 |
(C2×Dic3).57D6 = C62.24C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).57D6 | 288,502 |
(C2×Dic3).58D6 = C62.28C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).58D6 | 288,506 |
(C2×Dic3).59D6 = C62.31C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).59D6 | 288,509 |
(C2×Dic3).60D6 = S3×Dic3⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).60D6 | 288,524 |
(C2×Dic3).61D6 = C62.47C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).61D6 | 288,525 |
(C2×Dic3).62D6 = C62.48C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).62D6 | 288,526 |
(C2×Dic3).63D6 = C62.49C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).63D6 | 288,527 |
(C2×Dic3).64D6 = C62.51C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).64D6 | 288,529 |
(C2×Dic3).65D6 = C62.53C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).65D6 | 288,531 |
(C2×Dic3).66D6 = C62.54C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).66D6 | 288,532 |
(C2×Dic3).67D6 = C62.55C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).67D6 | 288,533 |
(C2×Dic3).68D6 = D6⋊1Dic6 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).68D6 | 288,535 |
(C2×Dic3).69D6 = S3×C4⋊Dic3 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).69D6 | 288,537 |
(C2×Dic3).70D6 = D6.9D12 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).70D6 | 288,539 |
(C2×Dic3).71D6 = Dic3⋊5D12 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).71D6 | 288,542 |
(C2×Dic3).72D6 = D12⋊Dic3 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).72D6 | 288,546 |
(C2×Dic3).73D6 = C62.70C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).73D6 | 288,548 |
(C2×Dic3).74D6 = C62.72C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).74D6 | 288,550 |
(C2×Dic3).75D6 = C62.74C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).75D6 | 288,552 |
(C2×Dic3).76D6 = Dic3⋊3D12 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).76D6 | 288,558 |
(C2×Dic3).77D6 = C62.83C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).77D6 | 288,561 |
(C2×Dic3).78D6 = C62.94C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).78D6 | 288,600 |
(C2×Dic3).79D6 = C62.95C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).79D6 | 288,601 |
(C2×Dic3).80D6 = C62.97C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).80D6 | 288,603 |
(C2×Dic3).81D6 = C62.99C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).81D6 | 288,605 |
(C2×Dic3).82D6 = C62.101C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).82D6 | 288,607 |
(C2×Dic3).83D6 = C62.112C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).83D6 | 288,618 |
(C2×Dic3).84D6 = C62.115C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).84D6 | 288,621 |
(C2×Dic3).85D6 = C62.121C23 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).85D6 | 288,627 |
(C2×Dic3).86D6 = C2×S3×Dic6 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).86D6 | 288,942 |
(C2×Dic3).87D6 = C2×D12⋊S3 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).87D6 | 288,944 |
(C2×Dic3).88D6 = C2×Dic3.D6 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).88D6 | 288,947 |
(C2×Dic3).89D6 = C2×D6.4D6 | φ: D6/S3 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).89D6 | 288,971 |
(C2×Dic3).90D6 = Dic3.D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).90D6 | 288,500 |
(C2×Dic3).91D6 = C62.25C23 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).91D6 | 288,503 |
(C2×Dic3).92D6 = D6⋊7Dic6 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).92D6 | 288,505 |
(C2×Dic3).93D6 = C62.29C23 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).93D6 | 288,507 |
(C2×Dic3).94D6 = C12.27D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).94D6 | 288,508 |
(C2×Dic3).95D6 = C12.28D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).95D6 | 288,512 |
(C2×Dic3).96D6 = C62.44C23 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).96D6 | 288,522 |
(C2×Dic3).97D6 = C4×D6⋊S3 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).97D6 | 288,549 |
(C2×Dic3).98D6 = C4×C3⋊D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).98D6 | 288,551 |
(C2×Dic3).99D6 = C62.75C23 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).99D6 | 288,553 |
(C2×Dic3).100D6 = D6⋊2D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).100D6 | 288,556 |
(C2×Dic3).101D6 = C12⋊D12 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).101D6 | 288,559 |
(C2×Dic3).102D6 = C4×C32⋊2Q8 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).102D6 | 288,565 |
(C2×Dic3).103D6 = C2×Dic3⋊Dic3 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).103D6 | 288,613 |
(C2×Dic3).104D6 = C2×C62.C22 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).104D6 | 288,615 |
(C2×Dic3).105D6 = C62⋊6D4 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).105D6 | 288,626 |
(C2×Dic3).106D6 = C2×D6.D6 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).106D6 | 288,948 |
(C2×Dic3).107D6 = C22×C32⋊2Q8 | φ: D6/C6 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).107D6 | 288,975 |
(C2×Dic3).108D6 = C62.6C23 | φ: trivial image | 48 | | (C2xDic3).108D6 | 288,484 |
(C2×Dic3).109D6 = Dic3⋊6Dic6 | φ: trivial image | 96 | | (C2xDic3).109D6 | 288,492 |
(C2×Dic3).110D6 = C4×S3×Dic3 | φ: trivial image | 96 | | (C2xDic3).110D6 | 288,523 |
(C2×Dic3).111D6 = Dic3⋊4D12 | φ: trivial image | 48 | | (C2xDic3).111D6 | 288,528 |
(C2×Dic3).112D6 = C4×C6.D6 | φ: trivial image | 48 | | (C2xDic3).112D6 | 288,530 |
(C2×Dic3).113D6 = Dic3×D12 | φ: trivial image | 96 | | (C2xDic3).113D6 | 288,540 |
(C2×Dic3).114D6 = C2×Dic32 | φ: trivial image | 96 | | (C2xDic3).114D6 | 288,602 |
(C2×Dic3).115D6 = Dic3×C3⋊D4 | φ: trivial image | 48 | | (C2xDic3).115D6 | 288,620 |
(C2×Dic3).116D6 = C2×D12⋊5S3 | φ: trivial image | 96 | | (C2xDic3).116D6 | 288,943 |
(C2×Dic3).117D6 = C2×D6.6D6 | φ: trivial image | 48 | | (C2xDic3).117D6 | 288,949 |