Extensions 1→N→G→Q→1 with N=C2 and Q=S3×D12

Direct product G=N×Q with N=C2 and Q=S3×D12
dρLabelID
C2×S3×D1248C2xS3xD12288,951


Non-split extensions G=N.Q with N=C2 and Q=S3×D12
extensionφ:Q→Aut NdρLabelID
C2.1(S3×D12) = Dic34D12central extension (φ=1)48C2.1(S3xD12)288,528
C2.2(S3×D12) = S3×C4⋊Dic3central extension (φ=1)96C2.2(S3xD12)288,537
C2.3(S3×D12) = Dic3×D12central extension (φ=1)96C2.3(S3xD12)288,540
C2.4(S3×D12) = Dic35D12central extension (φ=1)48C2.4(S3xD12)288,542
C2.5(S3×D12) = S3×D6⋊C4central extension (φ=1)48C2.5(S3xD12)288,568
C2.6(S3×D12) = S3×C24⋊C2central stem extension (φ=1)484C2.6(S3xD12)288,440
C2.7(S3×D12) = S3×D24central stem extension (φ=1)484+C2.7(S3xD12)288,441
C2.8(S3×D12) = C241D6central stem extension (φ=1)484+C2.8(S3xD12)288,442
C2.9(S3×D12) = D24⋊S3central stem extension (φ=1)484C2.9(S3xD12)288,443
C2.10(S3×D12) = S3×Dic12central stem extension (φ=1)964-C2.10(S3xD12)288,447
C2.11(S3×D12) = C24.3D6central stem extension (φ=1)964-C2.11(S3xD12)288,448
C2.12(S3×D12) = Dic12⋊S3central stem extension (φ=1)484C2.12(S3xD12)288,449
C2.13(S3×D12) = D6.1D12central stem extension (φ=1)484C2.13(S3xD12)288,454
C2.14(S3×D12) = D247S3central stem extension (φ=1)964-C2.14(S3xD12)288,455
C2.15(S3×D12) = D6.3D12central stem extension (φ=1)484+C2.15(S3xD12)288,456
C2.16(S3×D12) = Dic3.D12central stem extension (φ=1)48C2.16(S3xD12)288,500
C2.17(S3×D12) = Dic3⋊D12central stem extension (φ=1)48C2.17(S3xD12)288,534
C2.18(S3×D12) = D6.D12central stem extension (φ=1)48C2.18(S3xD12)288,538
C2.19(S3×D12) = D6.9D12central stem extension (φ=1)96C2.19(S3xD12)288,539
C2.20(S3×D12) = D62Dic6central stem extension (φ=1)96C2.20(S3xD12)288,541
C2.21(S3×D12) = C62.65C23central stem extension (φ=1)48C2.21(S3xD12)288,543
C2.22(S3×D12) = D6⋊D12central stem extension (φ=1)48C2.22(S3xD12)288,554
C2.23(S3×D12) = D62D12central stem extension (φ=1)96C2.23(S3xD12)288,556
C2.24(S3×D12) = C127D12central stem extension (φ=1)48C2.24(S3xD12)288,557
C2.25(S3×D12) = Dic33D12central stem extension (φ=1)48C2.25(S3xD12)288,558
C2.26(S3×D12) = C12⋊D12central stem extension (φ=1)48C2.26(S3xD12)288,559
C2.27(S3×D12) = C123Dic6central stem extension (φ=1)96C2.27(S3xD12)288,566
C2.28(S3×D12) = D64D12central stem extension (φ=1)48C2.28(S3xD12)288,570
C2.29(S3×D12) = D65D12central stem extension (φ=1)48C2.29(S3xD12)288,571

׿
×
𝔽