Extensions 1→N→G→Q→1 with N=C3×Dic3 and Q=D4

Direct product G=N×Q with N=C3×Dic3 and Q=D4
dρLabelID
C3×D4×Dic348C3xD4xDic3288,705

Semidirect products G=N:Q with N=C3×Dic3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3×Dic3)⋊1D4 = Dic3⋊D12φ: D4/C2C22 ⊆ Out C3×Dic348(C3xDic3):1D4288,534
(C3×Dic3)⋊2D4 = Dic33D12φ: D4/C2C22 ⊆ Out C3×Dic348(C3xDic3):2D4288,558
(C3×Dic3)⋊3D4 = C62.100C23φ: D4/C2C22 ⊆ Out C3×Dic348(C3xDic3):3D4288,606
(C3×Dic3)⋊4D4 = C62.112C23φ: D4/C2C22 ⊆ Out C3×Dic348(C3xDic3):4D4288,618
(C3×Dic3)⋊5D4 = C62.121C23φ: D4/C2C22 ⊆ Out C3×Dic348(C3xDic3):5D4288,627
(C3×Dic3)⋊6D4 = C12⋊D12φ: D4/C4C2 ⊆ Out C3×Dic348(C3xDic3):6D4288,559
(C3×Dic3)⋊7D4 = Dic34D12φ: D4/C4C2 ⊆ Out C3×Dic348(C3xDic3):7D4288,528
(C3×Dic3)⋊8D4 = Dic3×D12φ: D4/C4C2 ⊆ Out C3×Dic396(C3xDic3):8D4288,540
(C3×Dic3)⋊9D4 = Dic35D12φ: D4/C4C2 ⊆ Out C3×Dic348(C3xDic3):9D4288,542
(C3×Dic3)⋊10D4 = C3×C123D4φ: D4/C4C2 ⊆ Out C3×Dic348(C3xDic3):10D4288,711
(C3×Dic3)⋊11D4 = D6⋊D12φ: D4/C22C2 ⊆ Out C3×Dic348(C3xDic3):11D4288,554
(C3×Dic3)⋊12D4 = C626D4φ: D4/C22C2 ⊆ Out C3×Dic348(C3xDic3):12D4288,626
(C3×Dic3)⋊13D4 = C62.49C23φ: D4/C22C2 ⊆ Out C3×Dic396(C3xDic3):13D4288,527
(C3×Dic3)⋊14D4 = C62.74C23φ: D4/C22C2 ⊆ Out C3×Dic348(C3xDic3):14D4288,552
(C3×Dic3)⋊15D4 = C62.94C23φ: D4/C22C2 ⊆ Out C3×Dic348(C3xDic3):15D4288,600
(C3×Dic3)⋊16D4 = Dic3×C3⋊D4φ: D4/C22C2 ⊆ Out C3×Dic348(C3xDic3):16D4288,620
(C3×Dic3)⋊17D4 = C3×Dic3⋊D4φ: D4/C22C2 ⊆ Out C3×Dic348(C3xDic3):17D4288,655
(C3×Dic3)⋊18D4 = C3×C23.14D6φ: D4/C22C2 ⊆ Out C3×Dic348(C3xDic3):18D4288,710
(C3×Dic3)⋊19D4 = C3×Dic34D4φ: trivial image48(C3xDic3):19D4288,652
(C3×Dic3)⋊20D4 = C3×Dic35D4φ: trivial image96(C3xDic3):20D4288,664

Non-split extensions G=N.Q with N=C3×Dic3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3×Dic3).1D4 = C241D6φ: D4/C2C22 ⊆ Out C3×Dic3484+(C3xDic3).1D4288,442
(C3×Dic3).2D4 = D24⋊S3φ: D4/C2C22 ⊆ Out C3×Dic3484(C3xDic3).2D4288,443
(C3×Dic3).3D4 = C24.3D6φ: D4/C2C22 ⊆ Out C3×Dic3964-(C3xDic3).3D4288,448
(C3×Dic3).4D4 = Dic12⋊S3φ: D4/C2C22 ⊆ Out C3×Dic3484(C3xDic3).4D4288,449
(C3×Dic3).5D4 = C62.9C23φ: D4/C2C22 ⊆ Out C3×Dic396(C3xDic3).5D4288,487
(C3×Dic3).6D4 = D61Dic6φ: D4/C2C22 ⊆ Out C3×Dic396(C3xDic3).6D4288,535
(C3×Dic3).7D4 = C62.58C23φ: D4/C2C22 ⊆ Out C3×Dic348(C3xDic3).7D4288,536
(C3×Dic3).8D4 = D62Dic6φ: D4/C2C22 ⊆ Out C3×Dic396(C3xDic3).8D4288,541
(C3×Dic3).9D4 = C62.65C23φ: D4/C2C22 ⊆ Out C3×Dic348(C3xDic3).9D4288,543
(C3×Dic3).10D4 = C62.77C23φ: D4/C2C22 ⊆ Out C3×Dic348(C3xDic3).10D4288,555
(C3×Dic3).11D4 = S3×D4⋊S3φ: D4/C2C22 ⊆ Out C3×Dic3488+(C3xDic3).11D4288,572
(C3×Dic3).12D4 = S3×D4.S3φ: D4/C2C22 ⊆ Out C3×Dic3488-(C3xDic3).12D4288,576
(C3×Dic3).13D4 = D129D6φ: D4/C2C22 ⊆ Out C3×Dic3488-(C3xDic3).13D4288,580
(C3×Dic3).14D4 = D12.7D6φ: D4/C2C22 ⊆ Out C3×Dic3488+(C3xDic3).14D4288,582
(C3×Dic3).15D4 = S3×Q82S3φ: D4/C2C22 ⊆ Out C3×Dic3488+(C3xDic3).15D4288,586
(C3×Dic3).16D4 = S3×C3⋊Q16φ: D4/C2C22 ⊆ Out C3×Dic3968-(C3xDic3).16D4288,590
(C3×Dic3).17D4 = D12.24D6φ: D4/C2C22 ⊆ Out C3×Dic3968-(C3xDic3).17D4288,594
(C3×Dic3).18D4 = Dic6.22D6φ: D4/C2C22 ⊆ Out C3×Dic3488+(C3xDic3).18D4288,596
(C3×Dic3).19D4 = C62.101C23φ: D4/C2C22 ⊆ Out C3×Dic348(C3xDic3).19D4288,607
(C3×Dic3).20D4 = S3×C24⋊C2φ: D4/C4C2 ⊆ Out C3×Dic3484(C3xDic3).20D4288,440
(C3×Dic3).21D4 = S3×D24φ: D4/C4C2 ⊆ Out C3×Dic3484+(C3xDic3).21D4288,441
(C3×Dic3).22D4 = S3×Dic12φ: D4/C4C2 ⊆ Out C3×Dic3964-(C3xDic3).22D4288,447
(C3×Dic3).23D4 = Dic3.D12φ: D4/C4C2 ⊆ Out C3×Dic348(C3xDic3).23D4288,500
(C3×Dic3).24D4 = C123Dic6φ: D4/C4C2 ⊆ Out C3×Dic396(C3xDic3).24D4288,566
(C3×Dic3).25D4 = D6.1D12φ: D4/C4C2 ⊆ Out C3×Dic3484(C3xDic3).25D4288,454
(C3×Dic3).26D4 = D247S3φ: D4/C4C2 ⊆ Out C3×Dic3964-(C3xDic3).26D4288,455
(C3×Dic3).27D4 = D6.3D12φ: D4/C4C2 ⊆ Out C3×Dic3484+(C3xDic3).27D4288,456
(C3×Dic3).28D4 = C3×C23.11D6φ: D4/C4C2 ⊆ Out C3×Dic348(C3xDic3).28D4288,656
(C3×Dic3).29D4 = C3×C12⋊Q8φ: D4/C4C2 ⊆ Out C3×Dic396(C3xDic3).29D4288,659
(C3×Dic3).30D4 = C3×S3×D8φ: D4/C4C2 ⊆ Out C3×Dic3484(C3xDic3).30D4288,681
(C3×Dic3).31D4 = C3×S3×SD16φ: D4/C4C2 ⊆ Out C3×Dic3484(C3xDic3).31D4288,684
(C3×Dic3).32D4 = C3×S3×Q16φ: D4/C4C2 ⊆ Out C3×Dic3964(C3xDic3).32D4288,688
(C3×Dic3).33D4 = D6⋊Dic6φ: D4/C22C2 ⊆ Out C3×Dic396(C3xDic3).33D4288,499
(C3×Dic3).34D4 = Dic63D6φ: D4/C22C2 ⊆ Out C3×Dic3488+(C3xDic3).34D4288,573
(C3×Dic3).35D4 = Dic6.19D6φ: D4/C22C2 ⊆ Out C3×Dic3488-(C3xDic3).35D4288,577
(C3×Dic3).36D4 = D126D6φ: D4/C22C2 ⊆ Out C3×Dic3488+(C3xDic3).36D4288,587
(C3×Dic3).37D4 = D12.11D6φ: D4/C22C2 ⊆ Out C3×Dic3968-(C3xDic3).37D4288,591
(C3×Dic3).38D4 = C623Q8φ: D4/C22C2 ⊆ Out C3×Dic348(C3xDic3).38D4288,612
(C3×Dic3).39D4 = D12.22D6φ: D4/C22C2 ⊆ Out C3×Dic3488-(C3xDic3).39D4288,581
(C3×Dic3).40D4 = Dic6.20D6φ: D4/C22C2 ⊆ Out C3×Dic3488+(C3xDic3).40D4288,583
(C3×Dic3).41D4 = D12.12D6φ: D4/C22C2 ⊆ Out C3×Dic3968-(C3xDic3).41D4288,595
(C3×Dic3).42D4 = D12.13D6φ: D4/C22C2 ⊆ Out C3×Dic3488+(C3xDic3).42D4288,597
(C3×Dic3).43D4 = C3×Dic3.D4φ: D4/C22C2 ⊆ Out C3×Dic348(C3xDic3).43D4288,649
(C3×Dic3).44D4 = C3×D6⋊Q8φ: D4/C22C2 ⊆ Out C3×Dic396(C3xDic3).44D4288,667
(C3×Dic3).45D4 = C3×D8⋊S3φ: D4/C22C2 ⊆ Out C3×Dic3484(C3xDic3).45D4288,682
(C3×Dic3).46D4 = C3×Q83D6φ: D4/C22C2 ⊆ Out C3×Dic3484(C3xDic3).46D4288,685
(C3×Dic3).47D4 = C3×D4.D6φ: D4/C22C2 ⊆ Out C3×Dic3484(C3xDic3).47D4288,686
(C3×Dic3).48D4 = C3×Q16⋊S3φ: D4/C22C2 ⊆ Out C3×Dic3964(C3xDic3).48D4288,689
(C3×Dic3).49D4 = C3×D83S3φ: trivial image484(C3xDic3).49D4288,683
(C3×Dic3).50D4 = C3×Q8.7D6φ: trivial image484(C3xDic3).50D4288,687
(C3×Dic3).51D4 = C3×D24⋊C2φ: trivial image964(C3xDic3).51D4288,690

׿
×
𝔽