extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Dic3)⋊1D4 = Dic3⋊D12 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):1D4 | 288,534 |
(C3×Dic3)⋊2D4 = Dic3⋊3D12 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):2D4 | 288,558 |
(C3×Dic3)⋊3D4 = C62.100C23 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):3D4 | 288,606 |
(C3×Dic3)⋊4D4 = C62.112C23 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):4D4 | 288,618 |
(C3×Dic3)⋊5D4 = C62.121C23 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):5D4 | 288,627 |
(C3×Dic3)⋊6D4 = C12⋊D12 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):6D4 | 288,559 |
(C3×Dic3)⋊7D4 = Dic3⋊4D12 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):7D4 | 288,528 |
(C3×Dic3)⋊8D4 = Dic3×D12 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 96 | | (C3xDic3):8D4 | 288,540 |
(C3×Dic3)⋊9D4 = Dic3⋊5D12 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):9D4 | 288,542 |
(C3×Dic3)⋊10D4 = C3×C12⋊3D4 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):10D4 | 288,711 |
(C3×Dic3)⋊11D4 = D6⋊D12 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):11D4 | 288,554 |
(C3×Dic3)⋊12D4 = C62⋊6D4 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):12D4 | 288,626 |
(C3×Dic3)⋊13D4 = C62.49C23 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 96 | | (C3xDic3):13D4 | 288,527 |
(C3×Dic3)⋊14D4 = C62.74C23 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):14D4 | 288,552 |
(C3×Dic3)⋊15D4 = C62.94C23 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):15D4 | 288,600 |
(C3×Dic3)⋊16D4 = Dic3×C3⋊D4 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):16D4 | 288,620 |
(C3×Dic3)⋊17D4 = C3×Dic3⋊D4 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):17D4 | 288,655 |
(C3×Dic3)⋊18D4 = C3×C23.14D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3):18D4 | 288,710 |
(C3×Dic3)⋊19D4 = C3×Dic3⋊4D4 | φ: trivial image | 48 | | (C3xDic3):19D4 | 288,652 |
(C3×Dic3)⋊20D4 = C3×Dic3⋊5D4 | φ: trivial image | 96 | | (C3xDic3):20D4 | 288,664 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Dic3).1D4 = C24⋊1D6 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | 4+ | (C3xDic3).1D4 | 288,442 |
(C3×Dic3).2D4 = D24⋊S3 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).2D4 | 288,443 |
(C3×Dic3).3D4 = C24.3D6 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 96 | 4- | (C3xDic3).3D4 | 288,448 |
(C3×Dic3).4D4 = Dic12⋊S3 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).4D4 | 288,449 |
(C3×Dic3).5D4 = C62.9C23 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 96 | | (C3xDic3).5D4 | 288,487 |
(C3×Dic3).6D4 = D6⋊1Dic6 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 96 | | (C3xDic3).6D4 | 288,535 |
(C3×Dic3).7D4 = C62.58C23 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | | (C3xDic3).7D4 | 288,536 |
(C3×Dic3).8D4 = D6⋊2Dic6 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 96 | | (C3xDic3).8D4 | 288,541 |
(C3×Dic3).9D4 = C62.65C23 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | | (C3xDic3).9D4 | 288,543 |
(C3×Dic3).10D4 = C62.77C23 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | | (C3xDic3).10D4 | 288,555 |
(C3×Dic3).11D4 = S3×D4⋊S3 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | 8+ | (C3xDic3).11D4 | 288,572 |
(C3×Dic3).12D4 = S3×D4.S3 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | 8- | (C3xDic3).12D4 | 288,576 |
(C3×Dic3).13D4 = D12⋊9D6 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | 8- | (C3xDic3).13D4 | 288,580 |
(C3×Dic3).14D4 = D12.7D6 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | 8+ | (C3xDic3).14D4 | 288,582 |
(C3×Dic3).15D4 = S3×Q8⋊2S3 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | 8+ | (C3xDic3).15D4 | 288,586 |
(C3×Dic3).16D4 = S3×C3⋊Q16 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 96 | 8- | (C3xDic3).16D4 | 288,590 |
(C3×Dic3).17D4 = D12.24D6 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 96 | 8- | (C3xDic3).17D4 | 288,594 |
(C3×Dic3).18D4 = Dic6.22D6 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | 8+ | (C3xDic3).18D4 | 288,596 |
(C3×Dic3).19D4 = C62.101C23 | φ: D4/C2 → C22 ⊆ Out C3×Dic3 | 48 | | (C3xDic3).19D4 | 288,607 |
(C3×Dic3).20D4 = S3×C24⋊C2 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).20D4 | 288,440 |
(C3×Dic3).21D4 = S3×D24 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 48 | 4+ | (C3xDic3).21D4 | 288,441 |
(C3×Dic3).22D4 = S3×Dic12 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 96 | 4- | (C3xDic3).22D4 | 288,447 |
(C3×Dic3).23D4 = Dic3.D12 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3).23D4 | 288,500 |
(C3×Dic3).24D4 = C12⋊3Dic6 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 96 | | (C3xDic3).24D4 | 288,566 |
(C3×Dic3).25D4 = D6.1D12 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).25D4 | 288,454 |
(C3×Dic3).26D4 = D24⋊7S3 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 96 | 4- | (C3xDic3).26D4 | 288,455 |
(C3×Dic3).27D4 = D6.3D12 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 48 | 4+ | (C3xDic3).27D4 | 288,456 |
(C3×Dic3).28D4 = C3×C23.11D6 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3).28D4 | 288,656 |
(C3×Dic3).29D4 = C3×C12⋊Q8 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 96 | | (C3xDic3).29D4 | 288,659 |
(C3×Dic3).30D4 = C3×S3×D8 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).30D4 | 288,681 |
(C3×Dic3).31D4 = C3×S3×SD16 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).31D4 | 288,684 |
(C3×Dic3).32D4 = C3×S3×Q16 | φ: D4/C4 → C2 ⊆ Out C3×Dic3 | 96 | 4 | (C3xDic3).32D4 | 288,688 |
(C3×Dic3).33D4 = D6⋊Dic6 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 96 | | (C3xDic3).33D4 | 288,499 |
(C3×Dic3).34D4 = Dic6⋊3D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | 8+ | (C3xDic3).34D4 | 288,573 |
(C3×Dic3).35D4 = Dic6.19D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | 8- | (C3xDic3).35D4 | 288,577 |
(C3×Dic3).36D4 = D12⋊6D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | 8+ | (C3xDic3).36D4 | 288,587 |
(C3×Dic3).37D4 = D12.11D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 96 | 8- | (C3xDic3).37D4 | 288,591 |
(C3×Dic3).38D4 = C62⋊3Q8 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3).38D4 | 288,612 |
(C3×Dic3).39D4 = D12.22D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | 8- | (C3xDic3).39D4 | 288,581 |
(C3×Dic3).40D4 = Dic6.20D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | 8+ | (C3xDic3).40D4 | 288,583 |
(C3×Dic3).41D4 = D12.12D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 96 | 8- | (C3xDic3).41D4 | 288,595 |
(C3×Dic3).42D4 = D12.13D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | 8+ | (C3xDic3).42D4 | 288,597 |
(C3×Dic3).43D4 = C3×Dic3.D4 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | | (C3xDic3).43D4 | 288,649 |
(C3×Dic3).44D4 = C3×D6⋊Q8 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 96 | | (C3xDic3).44D4 | 288,667 |
(C3×Dic3).45D4 = C3×D8⋊S3 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).45D4 | 288,682 |
(C3×Dic3).46D4 = C3×Q8⋊3D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).46D4 | 288,685 |
(C3×Dic3).47D4 = C3×D4.D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 48 | 4 | (C3xDic3).47D4 | 288,686 |
(C3×Dic3).48D4 = C3×Q16⋊S3 | φ: D4/C22 → C2 ⊆ Out C3×Dic3 | 96 | 4 | (C3xDic3).48D4 | 288,689 |
(C3×Dic3).49D4 = C3×D8⋊3S3 | φ: trivial image | 48 | 4 | (C3xDic3).49D4 | 288,683 |
(C3×Dic3).50D4 = C3×Q8.7D6 | φ: trivial image | 48 | 4 | (C3xDic3).50D4 | 288,687 |
(C3×Dic3).51D4 = C3×D24⋊C2 | φ: trivial image | 96 | 4 | (C3xDic3).51D4 | 288,690 |