Copied to
clipboard

G = S3×C13⋊C4order 312 = 23·3·13

Direct product of S3 and C13⋊C4

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C13⋊C4, D39⋊C4, D13.1D6, C13⋊(C4×S3), C39⋊(C2×C4), C39⋊C4⋊C2, (S3×C13)⋊C4, (S3×D13).C2, (C3×D13).C22, (C3×C13⋊C4)⋊C2, C31(C2×C13⋊C4), SmallGroup(312,46)

Series: Derived Chief Lower central Upper central

C1C39 — S3×C13⋊C4
C1C13C39C3×D13C3×C13⋊C4 — S3×C13⋊C4
C39 — S3×C13⋊C4
C1

Generators and relations for S3×C13⋊C4
 G = < a,b,c,d | a3=b2=c13=d4=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c5 >

3C2
13C2
39C2
13C4
39C4
39C22
13S3
13C6
3C26
3D13
39C2×C4
13C12
13Dic3
13D6
3C13⋊C4
3D26
13C4×S3
3C2×C13⋊C4

Character table of S3×C13⋊C4

 class 12A2B2C34A4B4C4D612A12B13A13B13C26A26B26C39A39B39C
 size 131339213133939262626444121212888
ρ1111111111111111111111    trivial
ρ21-11-1111-1-1111111-1-1-1111    linear of order 2
ρ31-11-11-1-1111-1-1111-1-1-1111    linear of order 2
ρ411111-1-1-1-11-1-1111111111    linear of order 2
ρ51-1-111-iii-i-1-ii111-1-1-1111    linear of order 4
ρ61-1-111i-i-ii-1i-i111-1-1-1111    linear of order 4
ρ711-1-11-ii-ii-1-ii111111111    linear of order 4
ρ811-1-11i-ii-i-1i-i111111111    linear of order 4
ρ92020-12200-1-1-1222000-1-1-1    orthogonal lifted from S3
ρ102020-1-2-200-111222000-1-1-1    orthogonal lifted from D6
ρ1120-20-12i-2i001-ii222000-1-1-1    complex lifted from C4×S3
ρ1220-20-1-2i2i001i-i222000-1-1-1    complex lifted from C4×S3
ρ13440040000000ζ131213813513ζ139137136134ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ139137136134    orthogonal lifted from C13⋊C4
ρ144-40040000000ζ131213813513ζ139137136134ζ1311131013313213111310133132139137136134131213813513ζ131213813513ζ13111310133132ζ139137136134    orthogonal lifted from C2×C13⋊C4
ρ154-40040000000ζ13111310133132ζ131213813513ζ13913713613413913713613413121381351313111310133132ζ13111310133132ζ139137136134ζ131213813513    orthogonal lifted from C2×C13⋊C4
ρ16440040000000ζ13111310133132ζ131213813513ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513    orthogonal lifted from C13⋊C4
ρ17440040000000ζ139137136134ζ13111310133132ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ13111310133132    orthogonal lifted from C13⋊C4
ρ184-40040000000ζ139137136134ζ13111310133132ζ13121381351313121381351313111310133132139137136134ζ139137136134ζ131213813513ζ13111310133132    orthogonal lifted from C2×C13⋊C4
ρ198000-400000001311+2ζ1310+2ζ133+2ζ1321312+2ζ138+2ζ135+2ζ13139+2ζ137+2ζ136+2ζ13400013111310133132139137136134131213813513    orthogonal faithful
ρ208000-40000000139+2ζ137+2ζ136+2ζ1341311+2ζ1310+2ζ133+2ζ1321312+2ζ138+2ζ135+2ζ1300013913713613413121381351313111310133132    orthogonal faithful
ρ218000-400000001312+2ζ138+2ζ135+2ζ13139+2ζ137+2ζ136+2ζ1341311+2ζ1310+2ζ133+2ζ13200013121381351313111310133132139137136134    orthogonal faithful

Smallest permutation representation of S3×C13⋊C4
On 39 points
Generators in S39
(1 14 27)(2 15 28)(3 16 29)(4 17 30)(5 18 31)(6 19 32)(7 20 33)(8 21 34)(9 22 35)(10 23 36)(11 24 37)(12 25 38)(13 26 39)
(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(23 36)(24 37)(25 38)(26 39)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)
(2 9 13 6)(3 4 12 11)(5 7 10 8)(15 22 26 19)(16 17 25 24)(18 20 23 21)(28 35 39 32)(29 30 38 37)(31 33 36 34)

G:=sub<Sym(39)| (1,14,27)(2,15,28)(3,16,29)(4,17,30)(5,18,31)(6,19,32)(7,20,33)(8,21,34)(9,22,35)(10,23,36)(11,24,37)(12,25,38)(13,26,39), (14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (2,9,13,6)(3,4,12,11)(5,7,10,8)(15,22,26,19)(16,17,25,24)(18,20,23,21)(28,35,39,32)(29,30,38,37)(31,33,36,34)>;

G:=Group( (1,14,27)(2,15,28)(3,16,29)(4,17,30)(5,18,31)(6,19,32)(7,20,33)(8,21,34)(9,22,35)(10,23,36)(11,24,37)(12,25,38)(13,26,39), (14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (2,9,13,6)(3,4,12,11)(5,7,10,8)(15,22,26,19)(16,17,25,24)(18,20,23,21)(28,35,39,32)(29,30,38,37)(31,33,36,34) );

G=PermutationGroup([[(1,14,27),(2,15,28),(3,16,29),(4,17,30),(5,18,31),(6,19,32),(7,20,33),(8,21,34),(9,22,35),(10,23,36),(11,24,37),(12,25,38),(13,26,39)], [(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(23,36),(24,37),(25,38),(26,39)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39)], [(2,9,13,6),(3,4,12,11),(5,7,10,8),(15,22,26,19),(16,17,25,24),(18,20,23,21),(28,35,39,32),(29,30,38,37),(31,33,36,34)]])

Matrix representation of S3×C13⋊C4 in GL6(𝔽157)

1190000
991550000
001000
000100
000010
000001
,
1561380000
010000
001000
000100
000010
000001
,
100000
010000
003313533156
001000
000100
000010
,
12900000
01290000
001000
0012414692125
00135651032
000010

G:=sub<GL(6,GF(157))| [1,99,0,0,0,0,19,155,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[156,0,0,0,0,0,138,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,33,1,0,0,0,0,135,0,1,0,0,0,33,0,0,1,0,0,156,0,0,0],[129,0,0,0,0,0,0,129,0,0,0,0,0,0,1,124,135,0,0,0,0,146,65,0,0,0,0,92,10,1,0,0,0,125,32,0] >;

S3×C13⋊C4 in GAP, Magma, Sage, TeX

S_3\times C_{13}\rtimes C_4
% in TeX

G:=Group("S3xC13:C4");
// GroupNames label

G:=SmallGroup(312,46);
// by ID

G=gap.SmallGroup(312,46);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-13,20,168,4804,1814]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^13=d^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations

Export

Subgroup lattice of S3×C13⋊C4 in TeX
Character table of S3×C13⋊C4 in TeX

׿
×
𝔽