direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×C13⋊C4, D39⋊C4, D13.1D6, C13⋊(C4×S3), C39⋊(C2×C4), C39⋊C4⋊C2, (S3×C13)⋊C4, (S3×D13).C2, (C3×D13).C22, (C3×C13⋊C4)⋊C2, C3⋊1(C2×C13⋊C4), SmallGroup(312,46)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — C39 — C3×D13 — C3×C13⋊C4 — S3×C13⋊C4 |
C39 — S3×C13⋊C4 |
Generators and relations for S3×C13⋊C4
G = < a,b,c,d | a3=b2=c13=d4=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c5 >
Character table of S3×C13⋊C4
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 6 | 12A | 12B | 13A | 13B | 13C | 26A | 26B | 26C | 39A | 39B | 39C | |
size | 1 | 3 | 13 | 39 | 2 | 13 | 13 | 39 | 39 | 26 | 26 | 26 | 4 | 4 | 4 | 12 | 12 | 12 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | -i | i | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | i | -i | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -i | i | -i | i | -1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | i | -i | i | -i | -1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 0 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 2 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 0 | -2 | 0 | -1 | 2i | -2i | 0 | 0 | 1 | -i | i | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | complex lifted from C4×S3 |
ρ12 | 2 | 0 | -2 | 0 | -1 | -2i | 2i | 0 | 0 | 1 | i | -i | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | complex lifted from C4×S3 |
ρ13 | 4 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ138+ζ135+ζ13 | ζ139+ζ137+ζ136+ζ134 | ζ1311+ζ1310+ζ133+ζ132 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | orthogonal lifted from C13⋊C4 |
ρ14 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ138+ζ135+ζ13 | ζ139+ζ137+ζ136+ζ134 | ζ1311+ζ1310+ζ133+ζ132 | -ζ1311-ζ1310-ζ133-ζ132 | -ζ139-ζ137-ζ136-ζ134 | -ζ1312-ζ138-ζ135-ζ13 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | orthogonal lifted from C2×C13⋊C4 |
ρ15 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ1310+ζ133+ζ132 | ζ1312+ζ138+ζ135+ζ13 | ζ139+ζ137+ζ136+ζ134 | -ζ139-ζ137-ζ136-ζ134 | -ζ1312-ζ138-ζ135-ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | orthogonal lifted from C2×C13⋊C4 |
ρ16 | 4 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ1310+ζ133+ζ132 | ζ1312+ζ138+ζ135+ζ13 | ζ139+ζ137+ζ136+ζ134 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | orthogonal lifted from C13⋊C4 |
ρ17 | 4 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ137+ζ136+ζ134 | ζ1311+ζ1310+ζ133+ζ132 | ζ1312+ζ138+ζ135+ζ13 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | orthogonal lifted from C13⋊C4 |
ρ18 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ137+ζ136+ζ134 | ζ1311+ζ1310+ζ133+ζ132 | ζ1312+ζ138+ζ135+ζ13 | -ζ1312-ζ138-ζ135-ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | -ζ139-ζ137-ζ136-ζ134 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | orthogonal lifted from C2×C13⋊C4 |
ρ19 | 8 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ1311+2ζ1310+2ζ133+2ζ132 | 2ζ1312+2ζ138+2ζ135+2ζ13 | 2ζ139+2ζ137+2ζ136+2ζ134 | 0 | 0 | 0 | -ζ1311-ζ1310-ζ133-ζ132 | -ζ139-ζ137-ζ136-ζ134 | -ζ1312-ζ138-ζ135-ζ13 | orthogonal faithful |
ρ20 | 8 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ139+2ζ137+2ζ136+2ζ134 | 2ζ1311+2ζ1310+2ζ133+2ζ132 | 2ζ1312+2ζ138+2ζ135+2ζ13 | 0 | 0 | 0 | -ζ139-ζ137-ζ136-ζ134 | -ζ1312-ζ138-ζ135-ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | orthogonal faithful |
ρ21 | 8 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ1312+2ζ138+2ζ135+2ζ13 | 2ζ139+2ζ137+2ζ136+2ζ134 | 2ζ1311+2ζ1310+2ζ133+2ζ132 | 0 | 0 | 0 | -ζ1312-ζ138-ζ135-ζ13 | -ζ1311-ζ1310-ζ133-ζ132 | -ζ139-ζ137-ζ136-ζ134 | orthogonal faithful |
(1 14 27)(2 15 28)(3 16 29)(4 17 30)(5 18 31)(6 19 32)(7 20 33)(8 21 34)(9 22 35)(10 23 36)(11 24 37)(12 25 38)(13 26 39)
(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(23 36)(24 37)(25 38)(26 39)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)
(2 9 13 6)(3 4 12 11)(5 7 10 8)(15 22 26 19)(16 17 25 24)(18 20 23 21)(28 35 39 32)(29 30 38 37)(31 33 36 34)
G:=sub<Sym(39)| (1,14,27)(2,15,28)(3,16,29)(4,17,30)(5,18,31)(6,19,32)(7,20,33)(8,21,34)(9,22,35)(10,23,36)(11,24,37)(12,25,38)(13,26,39), (14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (2,9,13,6)(3,4,12,11)(5,7,10,8)(15,22,26,19)(16,17,25,24)(18,20,23,21)(28,35,39,32)(29,30,38,37)(31,33,36,34)>;
G:=Group( (1,14,27)(2,15,28)(3,16,29)(4,17,30)(5,18,31)(6,19,32)(7,20,33)(8,21,34)(9,22,35)(10,23,36)(11,24,37)(12,25,38)(13,26,39), (14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (2,9,13,6)(3,4,12,11)(5,7,10,8)(15,22,26,19)(16,17,25,24)(18,20,23,21)(28,35,39,32)(29,30,38,37)(31,33,36,34) );
G=PermutationGroup([[(1,14,27),(2,15,28),(3,16,29),(4,17,30),(5,18,31),(6,19,32),(7,20,33),(8,21,34),(9,22,35),(10,23,36),(11,24,37),(12,25,38),(13,26,39)], [(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(23,36),(24,37),(25,38),(26,39)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39)], [(2,9,13,6),(3,4,12,11),(5,7,10,8),(15,22,26,19),(16,17,25,24),(18,20,23,21),(28,35,39,32),(29,30,38,37),(31,33,36,34)]])
Matrix representation of S3×C13⋊C4 ►in GL6(𝔽157)
1 | 19 | 0 | 0 | 0 | 0 |
99 | 155 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
156 | 138 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 33 | 135 | 33 | 156 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
129 | 0 | 0 | 0 | 0 | 0 |
0 | 129 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 124 | 146 | 92 | 125 |
0 | 0 | 135 | 65 | 10 | 32 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(157))| [1,99,0,0,0,0,19,155,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[156,0,0,0,0,0,138,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,33,1,0,0,0,0,135,0,1,0,0,0,33,0,0,1,0,0,156,0,0,0],[129,0,0,0,0,0,0,129,0,0,0,0,0,0,1,124,135,0,0,0,0,146,65,0,0,0,0,92,10,1,0,0,0,125,32,0] >;
S3×C13⋊C4 in GAP, Magma, Sage, TeX
S_3\times C_{13}\rtimes C_4
% in TeX
G:=Group("S3xC13:C4");
// GroupNames label
G:=SmallGroup(312,46);
// by ID
G=gap.SmallGroup(312,46);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-13,20,168,4804,1814]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^13=d^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations
Export
Subgroup lattice of S3×C13⋊C4 in TeX
Character table of S3×C13⋊C4 in TeX